Question Number 46542 by Umar last updated on 28/Oct/18

Commented by Umar last updated on 28/Oct/18

Commented by maxmathsup by imad last updated on 28/Oct/18
![we have generally L(f(x))=∫_0 ^∞ f(t)e^(−tx) dt ⇒ L(cos^2 x)=∫_0 ^∞ cos^2 t e^(−tx) dt=(1/2)∫_0 ^∞ (1+cos(2t))e^(−tx) dt =(1/2)∫_0 ^∞ e^(−tx) dt +(1/2)∫_0 ^∞ e^(−tx) cos(2t)dt but ∫_0 ^∞ e^(−tx) dt =[−(1/x)e^(−tx) ]_(t=0) ^∞ =(1/x) ∫_0 ^∞ e^(−xt) cos(2t)dt =Re(∫_0 ^∞ e^(−xt+i2t) dt) and ∫_0 ^∞ e^((−x+2i)t) dt =[(1/(−x+2i)) e^((−x+2i)t) ]_(t=0) ^∞ =((−1)/(−x+2i)) =(1/(x−2i)) =((x+2i)/(x^2 +4)) ⇒ ∫_0 ^∞ e^(−xt) cos(2t)dt = (x/(x^2 +4)) ⇒L(cos^2 x)=(1/(2x)) +(x/(2(x^(2 ) +4)))](https://www.tinkutara.com/question/Q46544.png)
Commented by maxmathsup by imad last updated on 28/Oct/18

Commented by Umar last updated on 28/Oct/18

Commented by maxmathsup by imad last updated on 28/Oct/18
