Menu Close

Pls-help-r-2-r-C-where-r-t-is-a-function-and-C-is-a-constant-




Question Number 59361 by Andrew Foxman last updated on 08/May/19
Pls help  r^2 r′′=C where r(t) is a function and  C is a constant
Plshelpr2r=Cwherer(t)isafunctionandCisaconstant
Commented by kaivan.ahmadi last updated on 09/May/19
(d^2 r/dt^2 )=(C/r^2 )⇒(dr/dt)=∫(C/r^2 )dt=(C/r^2 )t+C_1 ⇒  r=((Ct^2 )/r^2 )+C_1 t+C_2 ⇒Ct^2 +(C_1 t+C_2 )r^2 −r^3 =0
d2rdt2=Cr2drdt=Cr2dt=Cr2t+C1r=Ct2r2+C1t+C2Ct2+(C1t+C2)r2r3=0
Commented by mr W last updated on 09/May/19
it is wrong sir!  r in ∫(C/r^2 )dt is a function of t, i.e. r=r(t),  you can not treat r(t) as a constant,  ∫(C/r^2 )dt≠(C/r^2 )t+C_1
itiswrongsir!rinCr2dtisafunctionoft,i.e.r=r(t),youcannottreatr(t)asaconstant,Cr2dtCr2t+C1
Commented by maxmathsup by imad last updated on 09/May/19
r is a function of variable t....
risafunctionofvariablet.
Commented by Andrew Foxman last updated on 09/May/19
The mistery of this equation remains...  Anyone can give their answer now and here...  If you are a hero in math resolve this equation...
ThemisteryofthisequationremainsAnyonecangivetheiranswernowandhereIfyouareaheroinmathresolvethisequation
Commented by MJS last updated on 10/May/19
I think r(t) can only be given implicitly
Ithinkr(t)canonlybegivenimplicitly
Commented by MJS last updated on 10/May/19
this is the answer from a friend who owns a  calculator. I cannot explain it, it′s just the  output of that machine:  ((Cln (1/(r(t))))/( (√B^3 )))+((r(t)(√((Br(t)−2C)/(r(t)))))/B)−((2Cln ((√((Br(t)−2C)/(r(t))))−(√B)))/( (√B^3 )))=t+A  with A, B, C ∈R  it can be further simplyfied when r(t)>0 ∧ b>0  2Cln((√(Br(t)−2C))−(√(Br(t))))−(√(Br(t))Br(t)−2C))=−(√B^3 )(t+A)
thisistheanswerfromafriendwhoownsacalculator.Icannotexplainit,itsjusttheoutputofthatmachine:Cln1r(t)B3+r(t)Br(t)2Cr(t)B2Cln(Br(t)2Cr(t)B)B3=t+AwithA,B,CRitcanbefurthersimplyfiedwhenr(t)>0b>02Cln(Br(t)2CBr(t))Br(t))Br(t)2C=B3(t+A)
Answered by alex041103 last updated on 10/May/19
Let′s try r(t)=−At^α   ⇒r^2 =A^2 t^(2α)   ⇒r′′=−Aα(α−1)t^(α−2)   ⇒r^2 r′′=−A^3 α(α−1)t^(3α−2) =C  ⇒ { ((3α−2=0)),((A^3 α(1−α)=C)) :}  ⇒α=(2/3)  ⇒A^3 (2/3)(1−(2/3))=(2/9)A^3 =C⇒A^3 =(9/2)C  ⇒A=(((9C)/2))^(1/3)   ⇒One solution is r(t)=−(((9C t^2  )/2))^(1/3)
Letstryr(t)=Atαr2=A2t2αr=Aα(α1)tα2r2r=A3α(α1)t3α2=C{3α2=0A3α(1α)=Cα=23A323(123)=29A3=CA3=92CA=9C23Onesolutionisr(t)=9Ct223
Answered by aleks041103 last updated on 07/Sep/20
Observe:   r′′=(d/dt)((dr/dt))=(dv/dt)=(dv/dr) (dr/dt)=v(dv/dr) , where v=(dr/dt)  Then:  vdv=((Cdr)/r^2 )=−Cd((1/r))=−d((C/r))  vdv=(1/2)d(v^2 )=d((v^2 /2))  ⇒d((v^2 /2))=−d((C/r))  d((v^2 /2) + (C/r))=0⇒(v^2 /2)=(A/2)−(C/r)  where A is a constant  ⇒r′=v=(√(A−((2C)/r)))  ⇒(dr/( (√(A−((2C)/r)))))=dt  ⇒∫(dr/( (√(A−((2C)/r)))))=∫dt=t+B, B=const.  u=(√r)⇒r=u^2  and dr=2udu  ∫(dr/( (√(A−((2C)/r)))))=∫((√r)/( (√(Ar−2C))))dr=  =∫((u2udu)/( (√(Au^2 −2C))))=(1/( (√A)))∫u((2udu)/( (√(u^2 −((2C)/A)))))=  =(1/( (√A)))∫u((d(u^2 −2C/A))/( (√(u^2 −2C/A))))=  =(2/( (√A)))∫u d((√(u^2 −((2C)/A))))  IBP :  (2/( (√A)))∫u d((√(u^2 −((2C)/A))))=  =(2/( (√A)))(u(√(u^2 −((2C)/A)))−∫(√(u^2 −((2C)/A)))du)=  =(√((8C)/A^2 ))(u(√(((√(A/(2C))) u)^2 −1))−∫(√(((√(A/(2C))) u)^2 −1))du)  ∫(√(((√(A/(2C))) u)^2 −1))du= (w=(√(A/(2C)))u)  =(√((2C)/A))∫(√(w^2 −1))dw  w=secθ and dw=secθ tanθ dθ  ∫(√(w^2 −1))dw=∫((sin^2 θ)/(cos^3 θ))dθ=  =∫((sinθ)/(cos^3 θ))sinθdθ=(1/2)∫sinθd((1/(cos^2 θ)))  IBP :  ∫(√(w^2 −1))dw=(1/2)(((sinθ)/(cos^2 θ))−∫(dθ/(cosθ)))=  =(1/2)(((sinθ)/(cos^2 θ))−ln(secθ+tanθ))=  =(1/2)(tanθsecθ−ln(secθ+tanθ))=  =(1/2)(w(√(w^2 −1))−ln(w+(√(w^2 −1))))  Now all integrals have been calculated!  We need to just go back and plug  every substitution so we get the final  result  ...
Observe:r=ddt(drdt)=dvdt=dvdrdrdt=vdvdr,wherev=drdtThen:vdv=Cdrr2=Cd(1r)=d(Cr)vdv=12d(v2)=d(v22)d(v22)=d(Cr)d(v22+Cr)=0v22=A2CrwhereAisaconstantr=v=A2CrdrA2Cr=dtdrA2Cr=dt=t+B,B=const.u=rr=u2anddr=2ududrA2Cr=rAr2Cdr==u2uduAu22C=1Au2uduu22CA==1Aud(u22C/A)u22C/A==2Aud(u22CA)IBP:2Aud(u22CA)==2A(uu22CAu22CAdu)==8CA2(u(A2Cu)21(A2Cu)21du)(A2Cu)21du=(w=A2Cu)=2CAw21dww=secθanddw=secθtanθdθw21dw=sin2θcos3θdθ==sinθcos3θsinθdθ=12sinθd(1cos2θ)IBP:w21dw=12(sinθcos2θdθcosθ)==12(sinθcos2θln(secθ+tanθ))==12(tanθsecθln(secθ+tanθ))==12(ww21ln(w+w21))Nowallintegralshavebeencalculated!Weneedtojustgobackandplugeverysubstitutionsowegetthefinalresult

Leave a Reply

Your email address will not be published. Required fields are marked *