Menu Close

plz-help-Evalute-pi-3-pi-4-sin-2-x-1-cosx-dx-




Question Number 32928 by Cheyboy last updated on 06/Apr/18
plz help  Evalute    ∫_(π/3 ) ^(π/4)  ((sin^2 x)/( (√(1−cosx))))dx
plzhelpEvaluteπ/4π/3sin2x1cosxdx
Commented by abdo imad last updated on 06/Apr/18
let put I = ∫_(π/3) ^(π/4)   ((sin^2 x)/( (√(1−cosx)))) dx  I = ∫_(π/3) ^(π/4)    ((4sin^2 ((x/2))cos^2 ((x/2)))/( (√2) sin((x/2))))dx=(4/( (√2))) ∫_(π/3) ^(π/4)  sin((x/2))cos^2 ((x/2))dx  =(4/( (√2))) ∫_(π/4) ^(π/3)  (−sin((x/2)))cos^2 ((x/2))dx  =(4/( (√2))) (2/3)[ cos^3 ((x/2))]_(π/4) ^(π/3)  = (8/(3(√2))) (cos^3 ((π/6))−cos^3 ((π/8)))  = (8/(3(√2)))( (((√3)/2))^3  −( ((√(2+(√2)))/2))^3 )  = (1/(3(√2)))( 3(√3) −((√(2+(√2))) )^3 ) .
letputI=π3π4sin2x1cosxdxI=π3π44sin2(x2)cos2(x2)2sin(x2)dx=42π3π4sin(x2)cos2(x2)dx=42π4π3(sin(x2))cos2(x2)dx=4223[cos3(x2)]π4π3=832(cos3(π6)cos3(π8))=832((32)3(2+22)3)=132(33(2+2)3).
Commented by Cheyboy last updated on 07/Apr/18
thankx you all for ur help
thankxyouallforurhelp
Answered by sma3l2996 last updated on 06/Apr/18
I=∫_(π/3) ^(π/4) ((sin^2 x)/( (√(1−cosx))))dx  let  t=cosx⇒dt=−sinxdx  sinx=(√(1−cos^2 x))=(√(1−t^2 ))  I=−∫_(1/2) ^((√2)/2) ((√(1−t^2 ))/( (√(1−t))))dt=∫_((√2)/2) ^(1/2) (√(1+t))dt=(2/3)[(√((1+t)^3 ))]_((√2)/2) ^(1/2)   I=(2/3)(((√(3/2)))^3 −((√((2+(√2))/2)))^3 )  etc...
I=π/3π/4sin2x1cosxdxlett=cosxdt=sinxdxsinx=1cos2x=1t2I=1/22/21t21tdt=2/21/21+tdt=23[(1+t)3]2/21/2I=23((32)3(2+22)3)etc
Commented by Cheyboy last updated on 07/Apr/18
thank you vry much sir
thankyouvrymuchsir
Answered by hknkrc46 last updated on 07/Apr/18
∫_(π/3) ^(π/4) ((sin^2 x(√(1−cosx)))/(1−cosx))dx=∫_(π/3) ^(π/4) ((sinx(√(1−cosx)))/(1−cosx))sinxdx  =∫_(π/3) ^(π/4) (((√(1−cos^2 x))(√(1−cosx)))/(1−cosx))sinxdx  ★ 1−cosx=u⇒sinxdx=du ∧(x→(π/4)⇒u→((2−(√2))/2) ∧ x→(π/3)⇒u→(1/2))  =∫_(1/2) ^((2−(√2))/2) (((√(1−(1−u)^2 ))(√u))/u)du=∫_(1/2) ^((2−(√2))/2) ((√(2u−u^2 ))/( (√u)))du  =∫_(1/2) ^((2−(√2))/2) (√(2−u))du=−(2/3)(2−u)^(3/2) ∣_(1/2) ^((2−(√2))/2)   =−(2/3)[(2−((2−(√2))/2))^(3/2) −(2−(1/2))^(3/2) ]  =−(2/3)[(((2+(√2))/2))^(3/2) −((3/2))^(3/2) ]
π3π4sin2x1cosx1cosxdx=π3π4sinx1cosx1cosxsinxdx=π3π41cos2x1cosx1cosxsinxdx1cosx=usinxdx=du(xπ4u222xπ3u12)=122221(1u)2uudu=122222uu2udu=122222udu=23(2u)3212222=23[(2222)32(212)32]=23[(2+22)32(32)32]
Commented by Cheyboy last updated on 07/Apr/18
thank u very much sir
thankuverymuchsir

Leave a Reply

Your email address will not be published. Required fields are marked *