Question Number 32928 by Cheyboy last updated on 06/Apr/18

Commented by abdo imad last updated on 06/Apr/18
![let put I = ∫_(π/3) ^(π/4) ((sin^2 x)/( (√(1−cosx)))) dx I = ∫_(π/3) ^(π/4) ((4sin^2 ((x/2))cos^2 ((x/2)))/( (√2) sin((x/2))))dx=(4/( (√2))) ∫_(π/3) ^(π/4) sin((x/2))cos^2 ((x/2))dx =(4/( (√2))) ∫_(π/4) ^(π/3) (−sin((x/2)))cos^2 ((x/2))dx =(4/( (√2))) (2/3)[ cos^3 ((x/2))]_(π/4) ^(π/3) = (8/(3(√2))) (cos^3 ((π/6))−cos^3 ((π/8))) = (8/(3(√2)))( (((√3)/2))^3 −( ((√(2+(√2)))/2))^3 ) = (1/(3(√2)))( 3(√3) −((√(2+(√2))) )^3 ) .](https://www.tinkutara.com/question/Q32931.png)
Commented by Cheyboy last updated on 07/Apr/18

Answered by sma3l2996 last updated on 06/Apr/18
![I=∫_(π/3) ^(π/4) ((sin^2 x)/( (√(1−cosx))))dx let t=cosx⇒dt=−sinxdx sinx=(√(1−cos^2 x))=(√(1−t^2 )) I=−∫_(1/2) ^((√2)/2) ((√(1−t^2 ))/( (√(1−t))))dt=∫_((√2)/2) ^(1/2) (√(1+t))dt=(2/3)[(√((1+t)^3 ))]_((√2)/2) ^(1/2) I=(2/3)(((√(3/2)))^3 −((√((2+(√2))/2)))^3 ) etc...](https://www.tinkutara.com/question/Q32930.png)
Commented by Cheyboy last updated on 07/Apr/18

Answered by hknkrc46 last updated on 07/Apr/18
![∫_(π/3) ^(π/4) ((sin^2 x(√(1−cosx)))/(1−cosx))dx=∫_(π/3) ^(π/4) ((sinx(√(1−cosx)))/(1−cosx))sinxdx =∫_(π/3) ^(π/4) (((√(1−cos^2 x))(√(1−cosx)))/(1−cosx))sinxdx ★ 1−cosx=u⇒sinxdx=du ∧(x→(π/4)⇒u→((2−(√2))/2) ∧ x→(π/3)⇒u→(1/2)) =∫_(1/2) ^((2−(√2))/2) (((√(1−(1−u)^2 ))(√u))/u)du=∫_(1/2) ^((2−(√2))/2) ((√(2u−u^2 ))/( (√u)))du =∫_(1/2) ^((2−(√2))/2) (√(2−u))du=−(2/3)(2−u)^(3/2) ∣_(1/2) ^((2−(√2))/2) =−(2/3)[(2−((2−(√2))/2))^(3/2) −(2−(1/2))^(3/2) ] =−(2/3)[(((2+(√2))/2))^(3/2) −((3/2))^(3/2) ]](https://www.tinkutara.com/question/Q32940.png)
Commented by Cheyboy last updated on 07/Apr/18
