Menu Close

possible-or-not-a-a-b-b-gt-a-b-b-a-with-below-conditions-case-1-a-gt-b-gt-1-case-2-0-lt-b-lt-a-lt-1-




Question Number 25589 by behi.8.3.4.17@gmail.com last updated on 11/Dec/17
possible or not ?          a^a +b^b > a^b +b^a   with below conditions:   case 1)  a>b>1  case 2)    0<b<a<1
$$\boldsymbol{{possible}}\:\boldsymbol{{or}}\:\boldsymbol{{not}}\:? \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{a}}^{\boldsymbol{{a}}} +\boldsymbol{{b}}^{\boldsymbol{{b}}} >\:\boldsymbol{{a}}^{\boldsymbol{{b}}} +\boldsymbol{{b}}^{\boldsymbol{{a}}} \\ $$$$\boldsymbol{{with}}\:\boldsymbol{{below}}\:\boldsymbol{{conditions}}: \\ $$$$\left.\:\boldsymbol{{case}}\:\mathrm{1}\right)\:\:\boldsymbol{{a}}>\boldsymbol{{b}}>\mathrm{1} \\ $$$$\left.\boldsymbol{{case}}\:\mathrm{2}\right)\:\:\:\:\mathrm{0}<\boldsymbol{{b}}<\boldsymbol{{a}}<\mathrm{1} \\ $$
Commented by prakash jain last updated on 12/Dec/17
a=3,b=2  27+4=31>9+8=17
$${a}=\mathrm{3},{b}=\mathrm{2} \\ $$$$\mathrm{27}+\mathrm{4}=\mathrm{31}>\mathrm{9}+\mathrm{8}=\mathrm{17} \\ $$
Commented by moxhix last updated on 12/Dec/17
a^b +b^a <a^a +b^b    , b<a  ⇔a^b −b^b −(a^a −b^a )<0  ⇔(((a^b −b^b )−(a^a −b^a ))/(b−a))>0  (∵b−a<0)    let f(x)=a^x −b^x   (x>0)  f ′(x)=a^x lna−b^x lnb  (i)1<b<a    0<lnb<lna, 0<b^x <a^x     ∴f ′(x)>0 (∀x>0)  (ii)0<b<a<1    lnb<lna<0, 0<b^x <a^x     ∴f ′(x)<0 (∀x>0)    Mean Value Theorem  ∃c∈(b,a)s.t.f ′(c)=((f(b)−f(a))/(b−a))  ∴    1<b<a⇒f ′(c)=((a^b −b^b −(a^a −b^a ))/(b−a))>0    0<b<a⇒f ′(c)<0
$${a}^{{b}} +{b}^{{a}} <{a}^{{a}} +{b}^{{b}} \:\:\:,\:{b}<{a} \\ $$$$\Leftrightarrow{a}^{{b}} −{b}^{{b}} −\left({a}^{{a}} −{b}^{{a}} \right)<\mathrm{0} \\ $$$$\Leftrightarrow\frac{\left({a}^{{b}} −{b}^{{b}} \right)−\left({a}^{{a}} −{b}^{{a}} \right)}{{b}−{a}}>\mathrm{0}\:\:\left(\because{b}−{a}<\mathrm{0}\right) \\ $$$$ \\ $$$${let}\:{f}\left({x}\right)={a}^{{x}} −{b}^{{x}} \:\:\left({x}>\mathrm{0}\right) \\ $$$${f}\:'\left({x}\right)={a}^{{x}} {lna}−{b}^{{x}} {lnb} \\ $$$$\left({i}\right)\mathrm{1}<{b}<{a} \\ $$$$\:\:\mathrm{0}<{lnb}<{lna},\:\mathrm{0}<{b}^{{x}} <{a}^{{x}} \\ $$$$\:\:\therefore{f}\:'\left({x}\right)>\mathrm{0}\:\left(\forall{x}>\mathrm{0}\right) \\ $$$$\left({ii}\right)\mathrm{0}<{b}<{a}<\mathrm{1} \\ $$$$\:\:{lnb}<{lna}<\mathrm{0},\:\mathrm{0}<{b}^{{x}} <{a}^{{x}} \\ $$$$\:\:\therefore{f}\:'\left({x}\right)<\mathrm{0}\:\left(\forall{x}>\mathrm{0}\right) \\ $$$$ \\ $$$${Mean}\:{Value}\:{Theorem} \\ $$$$\exists{c}\in\left({b},{a}\right){s}.{t}.{f}\:'\left({c}\right)=\frac{{f}\left({b}\right)−{f}\left({a}\right)}{{b}−{a}} \\ $$$$\therefore \\ $$$$\:\:\mathrm{1}<{b}<{a}\Rightarrow{f}\:'\left({c}\right)=\frac{{a}^{{b}} −{b}^{{b}} −\left({a}^{{a}} −{b}^{{a}} \right)}{{b}−{a}}>\mathrm{0} \\ $$$$\:\:\mathrm{0}<{b}<{a}\Rightarrow{f}\:'\left({c}\right)<\mathrm{0} \\ $$
Commented by behi.8.3.4.17@gmail.com last updated on 12/Dec/17
thank you very much dear.your   solution is so beautiful.
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{dear}.\mathrm{your}\: \\ $$$$\mathrm{solution}\:\mathrm{is}\:\mathrm{so}\:\mathrm{beautiful}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *