Menu Close

Problem-Without-L-Hopital-calculate-lim-x-0-tan-2-x-x-2-cos-2x-x-2-sin-2-x-




Question Number 130925 by Chhing last updated on 30/Jan/21
                     Problem     Without  L′Hopital     calculate     lim_(x→0) ((tan^2 (x)−x^2 cos(2x))/(x^2 −sin^2 (x)))
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Problem} \\ $$$$\:\:\:\mathrm{Without}\:\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\:\:\mathrm{calculate} \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{x}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)} \\ $$
Commented by malwan last updated on 30/Jan/21
x→0  ⇒tan x = sin x ∧ cos2x = 1  lim_(x→0)  ((sin^2 x − x^2 )/(x^2  − sin^2 x)) = −1  It is not right  whay?
$${x}\rightarrow\mathrm{0} \\ $$$$\Rightarrow{tan}\:{x}\:=\:{sin}\:{x}\:\wedge\:{cos}\mathrm{2}{x}\:=\:\mathrm{1} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:\frac{{sin}^{\mathrm{2}} {x}\:−\:{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} \:−\:{sin}^{\mathrm{2}} {x}}\:=\:−\mathrm{1} \\ $$$${It}\:{is}\:{not}\:{right} \\ $$$${whay}? \\ $$
Commented by Chhing last updated on 30/Jan/21
 but  tan(0)=0
$$\:\mathrm{but}\:\:\mathrm{tan}\left(\mathrm{0}\right)=\mathrm{0}\: \\ $$
Commented by malwan last updated on 30/Jan/21
and sin(0)=0
$${and}\:{sin}\left(\mathrm{0}\right)=\mathrm{0} \\ $$
Commented by Chhing last updated on 31/Jan/21
Yes, sir
$$\mathrm{Yes},\:\mathrm{sir} \\ $$
Answered by bramlexs22 last updated on 30/Jan/21
  = lim_(x→0)  (((x+(x^3 /3))^2 −x^2 (1−2x^2 ))/(x^2 −(x−(x^3 /6))^2 ))   = lim_(x→0)  ((x^2 (1+(x^2 /3))^2 −x^2 (1−2x^2 ))/(x^2 (1−(1−(x^2 /6))^2 )))   = lim_(x→0)  (((1+((2x^2 )/3))−1+2x^2 )/(1−(1−(x^2 /3))))   = lim_(x→0)  (((((8x^2 )/3)))/(((x^2 /3))))   = 8 ✓
$$\:\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({x}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} −\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\right)^{\mathrm{2}} } \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} \left(\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{6}}\right)^{\mathrm{2}} \right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}\right)−\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)} \\ $$$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{8}{x}^{\mathrm{2}} }{\mathrm{3}}\right)}{\left(\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)} \\ $$$$\:=\:\mathrm{8}\:\checkmark \\ $$
Commented by bramlexs22 last updated on 30/Jan/21
Answered by benjo_mathlover last updated on 30/Jan/21
 lim_(x→0)  ((tan^2 x−x^2 (cos^2 x−sin^2 x))/(x^2 −sin^2 x))   lim_(x→0)  ((tan^2 x−x^2 cos^2 x+x^2 sin^2 x)/((x+sin x)(x−sin x)))   lim_(x→0)  (((tan x+xcos x)(tan x−xcos x)+x^2 sin^2 x)/((x+sin x)(x−sin x)))  lim_(x→0)  (((((tan x)/x)+cos x)(x+(x^3 /3)−x(1−(1/2)x^2 ))+x^2 (x−(x^3 /6)))/((1+((sin x)/x))(x−x+(x^3 /6))))  lim_(x→0)  ((2((x^3 /3)+(x^3 /2))+x^3 −(x^5 /6))/(2((x^3 /6))))=lim_(x→0)  (((8/3)−(x^2 /6))/(1/3))   = 8.
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{2}} \left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{x}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{tan}\:\mathrm{x}+\mathrm{xcos}\:\mathrm{x}\right)\left(\mathrm{tan}\:\mathrm{x}−\mathrm{xcos}\:\mathrm{x}\right)+\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{x}+\mathrm{sin}\:\mathrm{x}\right)\left(\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\frac{\mathrm{tan}\:\mathrm{x}}{\mathrm{x}}+\mathrm{cos}\:\mathrm{x}\right)\left(\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}−\mathrm{x}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}^{\mathrm{2}} \right)\right)+\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)}{\left(\mathrm{1}+\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}\right)\left(\mathrm{x}−\mathrm{x}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}\right)+\mathrm{x}^{\mathrm{3}} −\frac{\mathrm{x}^{\mathrm{5}} }{\mathrm{6}}}{\mathrm{2}\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\right)}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{8}}{\mathrm{3}}−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{6}}}{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:=\:\mathrm{8}.\: \\ $$
Commented by bramlexs22 last updated on 30/Jan/21
yeahhh...✓
$${yeahhh}…\checkmark \\ $$
Commented by Chhing last updated on 30/Jan/21
Thank you
$$\mathrm{Thank}\:\mathrm{you} \\ $$
Commented by Chhing last updated on 30/Jan/21
Thank you
$$\mathrm{Thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *