Menu Close

Problem-Without-L-Hopital-calculate-lim-x-0-tan-2-x-x-2-cos-2x-x-2-sin-2-x-




Question Number 130925 by Chhing last updated on 30/Jan/21
                     Problem     Without  L′Hopital     calculate     lim_(x→0) ((tan^2 (x)−x^2 cos(2x))/(x^2 −sin^2 (x)))
ProblemWithoutLHopitalcalculatelimx0tan2(x)x2cos(2x)x2sin2(x)
Commented by malwan last updated on 30/Jan/21
x→0  ⇒tan x = sin x ∧ cos2x = 1  lim_(x→0)  ((sin^2 x − x^2 )/(x^2  − sin^2 x)) = −1  It is not right  whay?
x0tanx=sinxcos2x=1limx0sin2xx2x2sin2x=1Itisnotrightwhay?
Commented by Chhing last updated on 30/Jan/21
 but  tan(0)=0
buttan(0)=0
Commented by malwan last updated on 30/Jan/21
and sin(0)=0
andsin(0)=0
Commented by Chhing last updated on 31/Jan/21
Yes, sir
Yes,sir
Answered by bramlexs22 last updated on 30/Jan/21
  = lim_(x→0)  (((x+(x^3 /3))^2 −x^2 (1−2x^2 ))/(x^2 −(x−(x^3 /6))^2 ))   = lim_(x→0)  ((x^2 (1+(x^2 /3))^2 −x^2 (1−2x^2 ))/(x^2 (1−(1−(x^2 /6))^2 )))   = lim_(x→0)  (((1+((2x^2 )/3))−1+2x^2 )/(1−(1−(x^2 /3))))   = lim_(x→0)  (((((8x^2 )/3)))/(((x^2 /3))))   = 8 ✓
=limx0(x+x33)2x2(12x2)x2(xx36)2=limx0x2(1+x23)2x2(12x2)x2(1(1x26)2)=limx0(1+2x23)1+2x21(1x23)=limx0(8x23)(x23)=8
Commented by bramlexs22 last updated on 30/Jan/21
Answered by benjo_mathlover last updated on 30/Jan/21
 lim_(x→0)  ((tan^2 x−x^2 (cos^2 x−sin^2 x))/(x^2 −sin^2 x))   lim_(x→0)  ((tan^2 x−x^2 cos^2 x+x^2 sin^2 x)/((x+sin x)(x−sin x)))   lim_(x→0)  (((tan x+xcos x)(tan x−xcos x)+x^2 sin^2 x)/((x+sin x)(x−sin x)))  lim_(x→0)  (((((tan x)/x)+cos x)(x+(x^3 /3)−x(1−(1/2)x^2 ))+x^2 (x−(x^3 /6)))/((1+((sin x)/x))(x−x+(x^3 /6))))  lim_(x→0)  ((2((x^3 /3)+(x^3 /2))+x^3 −(x^5 /6))/(2((x^3 /6))))=lim_(x→0)  (((8/3)−(x^2 /6))/(1/3))   = 8.
limx0tan2xx2(cos2xsin2x)x2sin2xlimx0tan2xx2cos2x+x2sin2x(x+sinx)(xsinx)limx0(tanx+xcosx)(tanxxcosx)+x2sin2x(x+sinx)(xsinx)limx0(tanxx+cosx)(x+x33x(112x2))+x2(xx36)(1+sinxx)(xx+x36)limx02(x33+x32)+x3x562(x36)=limx083x2613=8.
Commented by bramlexs22 last updated on 30/Jan/21
yeahhh...✓
yeahhh
Commented by Chhing last updated on 30/Jan/21
Thank you
Thankyou
Commented by Chhing last updated on 30/Jan/21
Thank you
Thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *