Menu Close

Product-of-n-n-th-roots-of-unity-1-2-3-n-1-1-n-1-Why-How-to-get-RHS-




Question Number 19312 by Tinkutara last updated on 09/Aug/17
Product of n, n^(th)  roots of unity  = 1.α.α^2 .α^3  ..... α^(n−1)  = (−1)^(n−1)   Why? How to get RHS?
$$\mathrm{Product}\:\mathrm{of}\:{n},\:{n}^{\mathrm{th}} \:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity} \\ $$$$=\:\mathrm{1}.\alpha.\alpha^{\mathrm{2}} .\alpha^{\mathrm{3}} \:…..\:\alpha^{{n}−\mathrm{1}} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{Why}?\:\mathrm{How}\:\mathrm{to}\:\mathrm{get}\:\mathrm{RHS}? \\ $$
Answered by ajfour last updated on 09/Aug/17
x^n −1=(x−1)(x−α)(x−α^2 )...(x−α^(n−1) )  comparing constant term on  each side:  −1=(−1)^n α^(1+2+....+(n−1))   ⇒ 1.α.α^2 .α^3 ...α^(n−1) =(−1)^(n−1)  .
$$\mathrm{x}^{\mathrm{n}} −\mathrm{1}=\left(\mathrm{x}−\mathrm{1}\right)\left(\mathrm{x}−\alpha\right)\left(\mathrm{x}−\alpha^{\mathrm{2}} \right)…\left(\mathrm{x}−\alpha^{\mathrm{n}−\mathrm{1}} \right) \\ $$$$\mathrm{comparing}\:\mathrm{constant}\:\mathrm{term}\:\mathrm{on} \\ $$$$\mathrm{each}\:\mathrm{side}: \\ $$$$−\mathrm{1}=\left(−\mathrm{1}\right)^{\mathrm{n}} \alpha^{\mathrm{1}+\mathrm{2}+….+\left(\mathrm{n}−\mathrm{1}\right)} \\ $$$$\Rightarrow\:\mathrm{1}.\alpha.\alpha^{\mathrm{2}} .\alpha^{\mathrm{3}} …\alpha^{\mathrm{n}−\mathrm{1}} =\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \:. \\ $$$$ \\ $$
Commented by Tinkutara last updated on 09/Aug/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *