Menu Close

Prof-that-n-1-10-n-n-11-1-




Question Number 155842 by zainaltanjung last updated on 05/Oct/21
Prof that:  Σ_(n=1) ^(10)  n.n!=11!−1
$$\mathrm{Prof}\:\mathrm{that}: \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\:\mathrm{n}.\mathrm{n}!=\mathrm{11}!−\mathrm{1} \\ $$
Commented by puissant last updated on 05/Oct/21
Q155803
$${Q}\mathrm{155803} \\ $$
Answered by mr W last updated on 05/Oct/21
Σ_(n=1) ^k n×n!  =Σ_(n=1) ^k [(n+1)×n!−n!]  =Σ_(n=1) ^k [(n+1)!−n!]  =(k+1)!−1!  =(k+1)!−1
$$\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}{n}×{n}! \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\left[\left({n}+\mathrm{1}\right)×{n}!−{n}!\right] \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{{k}} {\sum}}\left[\left({n}+\mathrm{1}\right)!−{n}!\right] \\ $$$$=\left({k}+\mathrm{1}\right)!−\mathrm{1}! \\ $$$$=\left({k}+\mathrm{1}\right)!−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *