Menu Close

Proof-1-a-2-x-2-dx-1-2a-ln-a-x-a-x-c-




Question Number 27271 by GANGADHARSETHI last updated on 04/Jan/18
Proof   ∫(1/(a^2 −x^2 ))dx =(1/(2a))ln∣((a+x)/(a−x))∣+c
$$\boldsymbol{{P}}{roof}\: \\ $$$$\int\frac{\mathrm{1}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }{dx}\:=\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\mid\frac{{a}+{x}}{{a}−{x}}\mid+{c} \\ $$
Answered by sma3l2996 last updated on 04/Jan/18
∫(dx/(a^2 −x^2 ))=∫(dx/((a−x)(a+x)))  (1/((x+a)(a−x)))=(α/(a+x))+(β/(a−x))  ; α=(1/(2a))=β  so : ∫(dx/(a^2 −x^2 ))=(1/(2a))∫((1/(a+x))+(1/(a−x)))dx  =(1/(2a))(ln∣a+x∣−ln∣a−x∣)+c  =(1/(2a))ln∣((a+x)/(a−x))∣+c
$$\int\frac{{dx}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\int\frac{{dx}}{\left({a}−{x}\right)\left({a}+{x}\right)} \\ $$$$\frac{\mathrm{1}}{\left({x}+{a}\right)\left({a}−{x}\right)}=\frac{\alpha}{{a}+{x}}+\frac{\beta}{{a}−{x}}\:\:;\:\alpha=\frac{\mathrm{1}}{\mathrm{2}{a}}=\beta \\ $$$${so}\::\:\int\frac{{dx}}{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}{a}}\int\left(\frac{\mathrm{1}}{{a}+{x}}+\frac{\mathrm{1}}{{a}−{x}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}}\left({ln}\mid{a}+{x}\mid−{ln}\mid{a}−{x}\mid\right)+{c} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}}{ln}\mid\frac{{a}+{x}}{{a}−{x}}\mid+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *