Menu Close

proof-that-1-2-




Question Number 149485 by abdurehime last updated on 05/Aug/21
proof that 1=2??
$$\mathrm{proof}\:\mathrm{that}\:\mathrm{1}=\mathrm{2}?? \\ $$
Answered by Olaf_Thorendsen last updated on 05/Aug/21
if A = B  A×A = A×B  A^2  = AB = BA  A^2 −B^2  = BA−B^2   (A+B)(A−B) = B(A−B)  A+B = B  2B = B  2 = 1
$$\mathrm{if}\:\mathrm{A}\:=\:\mathrm{B} \\ $$$$\mathrm{A}×\mathrm{A}\:=\:\mathrm{A}×\mathrm{B} \\ $$$$\mathrm{A}^{\mathrm{2}} \:=\:\mathrm{AB}\:=\:\mathrm{BA} \\ $$$$\mathrm{A}^{\mathrm{2}} −\mathrm{B}^{\mathrm{2}} \:=\:\mathrm{BA}−\mathrm{B}^{\mathrm{2}} \\ $$$$\left(\mathrm{A}+\mathrm{B}\right)\left(\mathrm{A}−\mathrm{B}\right)\:=\:\mathrm{B}\left(\mathrm{A}−\mathrm{B}\right) \\ $$$$\mathrm{A}+\mathrm{B}\:=\:\mathrm{B} \\ $$$$\mathrm{2B}\:=\:\mathrm{B} \\ $$$$\mathrm{2}\:=\:\mathrm{1} \\ $$
Commented by cherokeesay last updated on 05/Aug/21
  you can only simplify A−B on both sides of the equality (5th line) when A≠B !  but A = B ⇒ A − B = 0 !!!  so you will have 0 of the sides of this equality !
$$ \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{only}\:\mathrm{simplify}\:\mathrm{A}−\mathrm{B}\:\mathrm{on}\:{both}\:{sides}\:{of}\:{the}\:{equality}\:\left(\mathrm{5}{th}\:{line}\right)\:{when}\:{A}\neq{B}\:! \\ $$$${but}\:{A}\:=\:{B}\:\Rightarrow\:{A}\:−\:{B}\:=\:\mathrm{0}\:!!! \\ $$$${so}\:{you}\:{will}\:{have}\:\mathrm{0}\:{of}\:{the}\:{sides}\:{of}\:{this}\:{equality}\:! \\ $$
Commented by peter frank last updated on 05/Aug/21
A+B=B  A=0
$${A}+{B}={B} \\ $$$${A}=\mathrm{0}\: \\ $$
Commented by Olaf_Thorendsen last updated on 05/Aug/21
Of course sir !  But in the real life 1 ≠ 2 too.
$$\mathrm{Of}\:\mathrm{course}\:\mathrm{sir}\:! \\ $$$$\mathrm{But}\:\mathrm{in}\:\mathrm{the}\:\mathrm{real}\:\mathrm{life}\:\mathrm{1}\:\neq\:\mathrm{2}\:\mathrm{too}. \\ $$
Commented by MJS_new last updated on 06/Aug/21
I remember someone here proved  i=(√(−1))=±1  but I don′t remember how... that guy was  seriously convinced... as I stated before:  those who know nothing must believe everything
$$\mathrm{I}\:\mathrm{remember}\:\mathrm{someone}\:\mathrm{here}\:\mathrm{proved} \\ $$$$\mathrm{i}=\sqrt{−\mathrm{1}}=\pm\mathrm{1} \\ $$$$\mathrm{but}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{remember}\:\mathrm{how}…\:\mathrm{that}\:\mathrm{guy}\:\mathrm{was} \\ $$$$\mathrm{seriously}\:\mathrm{convinced}…\:\mathrm{as}\:\mathrm{I}\:\mathrm{stated}\:\mathrm{before}: \\ $$$${those}\:{who}\:{know}\:{nothing}\:{must}\:{believe}\:{everything} \\ $$
Commented by MJS_new last updated on 06/Aug/21
...on the other hand  f(x)=(x/x)  lim_(x→0) f(x) =1 ⇒ (0/0)=1  g(x)=((2x)/x)  lim_(x→0)  g(x) =2 ⇒ (0/0)=2    (0/0)=1∧(0/0)=2 ⇒ 1=2 q.e.d.    now what′s you argument Mr. Peter Frank?
$$…\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hand} \\ $$$${f}\left({x}\right)=\frac{{x}}{{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)\:=\mathrm{1}\:\Rightarrow\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{1} \\ $$$${g}\left({x}\right)=\frac{\mathrm{2}{x}}{{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{g}\left({x}\right)\:=\mathrm{2}\:\Rightarrow\:\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2} \\ $$$$ \\ $$$$\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{1}\wedge\frac{\mathrm{0}}{\mathrm{0}}=\mathrm{2}\:\Rightarrow\:\mathrm{1}=\mathrm{2}\:{q}.{e}.{d}. \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{what}'\mathrm{s}\:\mathrm{you}\:\mathrm{argument}\:\mathrm{Mr}.\:\mathrm{Peter}\:\mathrm{Frank}? \\ $$
Commented by MJS_new last updated on 06/Aug/21
��������
Commented by iloveisrael last updated on 06/Aug/21
the other way    lim_(x→0) ((sin x)/x)=1=(0/0)  lim_(x→0) ((tan (4x))/(2x))=2=(0/0)  then 1=2
$$\mathrm{the}\:\mathrm{other}\:\mathrm{way}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}=\mathrm{1}=\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{tan}\:\left(\mathrm{4x}\right)}{\mathrm{2x}}=\mathrm{2}=\frac{\mathrm{0}}{\mathrm{0}} \\ $$$$\mathrm{then}\:\mathrm{1}=\mathrm{2}\: \\ $$
Commented by Olaf_Thorendsen last updated on 06/Aug/21
1 = (√1)  1 = (√((−1)×(−1)))  1 = (√(−1))×(√(−1))  1 = i×i = i^2 = −1  1 = −1
$$\mathrm{1}\:=\:\sqrt{\mathrm{1}} \\ $$$$\mathrm{1}\:=\:\sqrt{\left(−\mathrm{1}\right)×\left(−\mathrm{1}\right)} \\ $$$$\mathrm{1}\:=\:\sqrt{−\mathrm{1}}×\sqrt{−\mathrm{1}} \\ $$$$\mathrm{1}\:=\:{i}×{i}\:=\:{i}^{\mathrm{2}} =\:−\mathrm{1} \\ $$$$\mathrm{1}\:=\:−\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 06/Aug/21
but its correct dans Z/2Z
$$\mathrm{but}\:\mathrm{its}\:\mathrm{correct}\:\mathrm{dans}\:\mathrm{Z}/\mathrm{2Z} \\ $$
Commented by MJS_new last updated on 06/Aug/21
many people (maybe most people) forget that  the rules in R are different from those in C.  (we usually don′t have to think about the  differences between the rules of N, Z and Q  as we just “walk through” them while we  start to study)
$$\mathrm{many}\:\mathrm{people}\:\left(\mathrm{maybe}\:\mathrm{most}\:\mathrm{people}\right)\:\mathrm{forget}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{rules}\:\mathrm{in}\:\mathbb{R}\:\mathrm{are}\:\mathrm{different}\:\mathrm{from}\:\mathrm{those}\:\mathrm{in}\:\mathbb{C}. \\ $$$$\left(\mathrm{we}\:\mathrm{usually}\:\mathrm{don}'\mathrm{t}\:\mathrm{have}\:\mathrm{to}\:\mathrm{think}\:\mathrm{about}\:\mathrm{the}\right. \\ $$$$\mathrm{differences}\:\mathrm{between}\:\mathrm{the}\:\mathrm{rules}\:\mathrm{of}\:\mathbb{N},\:\mathbb{Z}\:\mathrm{and}\:\mathbb{Q} \\ $$$$\mathrm{as}\:\mathrm{we}\:\mathrm{just}\:“\mathrm{walk}\:\mathrm{through}''\:\mathrm{them}\:\mathrm{while}\:\mathrm{we} \\ $$$$\left.\mathrm{start}\:\mathrm{to}\:\mathrm{study}\right) \\ $$
Commented by ajfour last updated on 06/Aug/21
2^(nd)  step to 3^(rd)   step is not  allowed, there are certain  rules here that need be  followed..
$$\mathrm{2}^{{nd}} \:{step}\:{to}\:\mathrm{3}^{{rd}} \:\:{step}\:{is}\:{not} \\ $$$${allowed},\:{there}\:{are}\:{certain} \\ $$$${rules}\:{here}\:{that}\:{need}\:{be} \\ $$$${followed}.. \\ $$
Commented by peter frank last updated on 06/Aug/21
no argument sir.understood
$${no}\:{argument}\:{sir}.{understood} \\ $$
Answered by puissant last updated on 06/Aug/21
a=b  ⇒ a^2 =ab  ⇒a^2 +b^2 =b^2 +ab  ⇒a^2 +b^2 −2ab=b^2 −ab  ⇒ 2a^2 −2ab = b^2 −ab car a=b  ⇒ 2a(a−b)=a(a−b)  ⇒ 2a=a soit 2=1...
$$\mathrm{a}=\mathrm{b} \\ $$$$\Rightarrow\:\mathrm{a}^{\mathrm{2}} =\mathrm{ab} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =\mathrm{b}^{\mathrm{2}} +\mathrm{ab} \\ $$$$\Rightarrow\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{2ab}=\mathrm{b}^{\mathrm{2}} −\mathrm{ab} \\ $$$$\Rightarrow\:\mathrm{2a}^{\mathrm{2}} −\mathrm{2ab}\:=\:\mathrm{b}^{\mathrm{2}} −\mathrm{ab}\:\mathrm{car}\:\mathrm{a}=\mathrm{b} \\ $$$$\Rightarrow\:\mathrm{2a}\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{a}\left(\mathrm{a}−\mathrm{b}\right) \\ $$$$\Rightarrow\:\mathrm{2a}=\mathrm{a}\:\mathrm{soit}\:\mathrm{2}=\mathrm{1}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *