Menu Close

proof-that-1-2-2-2-3-2-n-2-n-2n-1-n-1-6-




Question Number 96527 by student work last updated on 02/Jun/20
proof that 1^2 +2^2 +3^2 +....+n^2 =((n(2n+1)(n+1))/6)
proofthat12+22+32+.+n2=n(2n+1)(n+1)6
Commented by 06122004 last updated on 02/Jun/20
Answered by Farruxjano last updated on 02/Jun/20
Commented by student work last updated on 02/Jun/20
thanks dear great
thanksdeargreat
Answered by Sourav mridha last updated on 02/Jun/20
there are many useful techniques  but I want to show very   unusual methond...  using Euler −Maclaurin formula      Σ_(m=1) ^n f(m)=∫_1 ^n f(x)dx+(1/2)f(1)+(1/2)f(n)                                  +(B_2 /(2!))[f^′ (n)−f^′ (1)]+...........  where B_n =Bernoulli number  and here  B_2 =(1/6)...f(m)=m^2 ...so  f(1)=1 and f(n)=n^2   f(x)=x^2  so f^′ (n)=2n,f^′ (1)=2    soΣ_(m=1) ^n m^2 =(n^3 /3)−(1/3)+(1/2)+(n^2 /2)+(((n−1))/6)                      =((2n^3 +3n^2 +n)/6)                     =((n[2n(n+1)+1(n+1)])/6)                      =(n/6).(n+1)(2n+1).
therearemanyusefultechniquesbutIwanttoshowveryunusualmethondusingEulerMaclaurinformulanm=1f(m)=1nf(x)dx+12f(1)+12f(n)+B22![f(n)f(1)]+..whereBn=BernoullinumberandhereB2=16f(m)=m2sof(1)=1andf(n)=n2f(x)=x2sof(n)=2n,f(1)=2sonm=1m2=n3313+12+n22+(n1)6=2n3+3n2+n6=n[2n(n+1)+1(n+1)]6=n6.(n+1)(2n+1).

Leave a Reply

Your email address will not be published. Required fields are marked *