Menu Close

Proof-that-1-cos-x-1-cos-x-1-cos-x-1-cos-x-2-cosec-x-




Question Number 176164 by HeferH last updated on 14/Sep/22
 Proof that :      (√((1 − cos x)/(1 + cos x))) + (√((1 + cos x)/(1 − cos x))) = 2 ∙ cosec x
$$\:{Proof}\:{that}\:: \\ $$$$\: \\ $$$$\:\sqrt{\frac{\mathrm{1}\:−\:\mathrm{cos}\:{x}}{\mathrm{1}\:+\:\mathrm{cos}\:{x}}}\:+\:\sqrt{\frac{\mathrm{1}\:+\:\mathrm{cos}\:{x}}{\mathrm{1}\:−\:\mathrm{cos}\:{x}}}\:=\:\mathrm{2}\:\centerdot\:\mathrm{cosec}\:{x} \\ $$$$\: \\ $$
Answered by Rasheed.Sindhi last updated on 14/Sep/22
 (√((1 − cos x)/(1 + cos x))) + (√((1 + cos x)/(1 − cos x))) = 2 ∙ cosec x  LHS:((√(1 − cos x))/( (√(1 + cos x))))+((√(1 + cos x))/( (√(1 − cos x))))          =((1−cos x+1+cos x)/( (√(1−cos^2 x))))         =(2/(sin x))         =2∙(1/(sin x))          =2cosec x=RHS
$$\:\sqrt{\frac{\mathrm{1}\:−\:\mathrm{cos}\:{x}}{\mathrm{1}\:+\:\mathrm{cos}\:{x}}}\:+\:\sqrt{\frac{\mathrm{1}\:+\:\mathrm{cos}\:{x}}{\mathrm{1}\:−\:\mathrm{cos}\:{x}}}\:=\:\mathrm{2}\:\centerdot\:\mathrm{cosec}\:{x} \\ $$$$\mathrm{LHS}:\frac{\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:{x}}}{\:\sqrt{\mathrm{1}\:+\:\mathrm{cos}\:{x}}}+\frac{\sqrt{\mathrm{1}\:+\:\mathrm{cos}\:{x}}}{\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:{x}}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{1}−\cancel{\mathrm{cos}\:{x}}+\mathrm{1}+\cancel{\mathrm{cos}\:{x}}}{\:\sqrt{\mathrm{1}−\mathrm{cos}^{\mathrm{2}} {x}}} \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{sin}\:{x}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{2}\centerdot\frac{\mathrm{1}}{\mathrm{sin}\:{x}} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{2cosec}\:{x}=\mathrm{RHS} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *