Menu Close

Proof-that-2-2-R-Q-




Question Number 190480 by aba last updated on 03/Apr/23
Proof that ((√2))^(√2) ∈R\Q
Proofthat(2)2RQ
Answered by mehdee42 last updated on 04/Apr/23
lem: if  p∉Q⇒(√p)∉Q  clim: 2^(√2) ∉Q  proof : if  2^(√2) =(p/q)∈Q⇒p=2^(√2) q    p,q∈N⇒2^(√2) ∈N# ⇒2^(√2) ∉Q   ⇒(√((2^(√2) )))=((√2))^(√2) ∉Q
lem:ifpQpQclim:22Qproof:if22=pqQp=22qYou can't use 'macro parameter character #' in math mode(22)=(2)2Q

Leave a Reply

Your email address will not be published. Required fields are marked *