Menu Close

Proof-that-2-2-R-Q-




Question Number 190480 by aba last updated on 03/Apr/23
Proof that ((√2))^(√2) ∈R\Q
$$\mathrm{Proof}\:\mathrm{that}\:\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \in\mathbb{R}\backslash\mathrm{Q} \\ $$
Answered by mehdee42 last updated on 04/Apr/23
lem: if  p∉Q⇒(√p)∉Q  clim: 2^(√2) ∉Q  proof : if  2^(√2) =(p/q)∈Q⇒p=2^(√2) q    p,q∈N⇒2^(√2) ∈N# ⇒2^(√2) ∉Q   ⇒(√((2^(√2) )))=((√2))^(√2) ∉Q
$${lem}:\:{if}\:\:{p}\notin{Q}\Rightarrow\sqrt{{p}}\notin{Q} \\ $$$${clim}:\:\mathrm{2}^{\sqrt{\mathrm{2}}} \notin{Q} \\ $$$${proof}\::\:{if}\:\:\mathrm{2}^{\sqrt{\mathrm{2}}} =\frac{{p}}{{q}}\in{Q}\Rightarrow{p}=\mathrm{2}^{\sqrt{\mathrm{2}}} {q}\:\: \\ $$$${p},{q}\in\mathbb{N}\Rightarrow\mathrm{2}^{\sqrt{\mathrm{2}}} \in\mathbb{N}#\:\Rightarrow\mathrm{2}^{\sqrt{\mathrm{2}}} \notin{Q}\: \\ $$$$\Rightarrow\sqrt{\left(\mathrm{2}^{\sqrt{\mathrm{2}}} \right)}=\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \notin{Q} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *