Menu Close

proof-that-2-n-1-gt-n-2-sin-n-




Question Number 162305 by mathlove last updated on 28/Dec/21
proof that  2^(n+1) >(n+2)sin n
proofthat2n+1>(n+2)sinn
Answered by aleks041103 last updated on 28/Dec/21
sin(n)≤1  ⇒(n+2)sin(n)≤n+2  for n=1:  2^(n+1) =4>3=n+2  for n=k:  2^(k+1) >k+2  for n=k+1:  2^((k+1)+1) =22^(k+1) >2(k+2)=2k+4  k≥1⇒2k+4≥k+1+4=k+5>(k+1)+2  ⇒2^((k+1)+1) >(k+1)+2  ⇒for ∀n∈N, 2^(n+1) >n+2≥(n+2)sin(n)  ⇒n=1,2,... , 2^(n+1) >(n+2)sin(n)  for n=0:  2^(n+1) =2>0=(n+2)sin(n)    ⇒2^(n+1) >(n+2)sin(n), ∀n∈N^0
sin(n)1(n+2)sin(n)n+2forn=1:2n+1=4>3=n+2forn=k:2k+1>k+2forn=k+1:2(k+1)+1=22k+1>2(k+2)=2k+4k12k+4k+1+4=k+5>(k+1)+22(k+1)+1>(k+1)+2fornN,2n+1>n+2(n+2)sin(n)n=1,2,,2n+1>(n+2)sin(n)forn=0:2n+1=2>0=(n+2)sin(n)2n+1>(n+2)sin(n),nN0
Answered by mr W last updated on 28/Dec/21
recall:  1≥sin n for any n∈R  (1+a)^n >1+na for a>0    2^(n+1) =(1+1)^(n+1)            >1+(n+1)×1=n+2=(n+2)×1           ≥(n+2) sin n  ⇒ 2^(n+1) >(n+2) sin n ✓
recall:1sinnforanynR(1+a)n>1+nafora>02n+1=(1+1)n+1>1+(n+1)×1=n+2=(n+2)×1(n+2)sinn2n+1>(n+2)sinn
Commented by aleks041103 last updated on 28/Dec/21
It is worth noting that  (n+2)≥(n+2)sin(n)  is true for n≥−2
Itisworthnotingthat(n+2)(n+2)sin(n)istrueforn2
Commented by mr W last updated on 29/Dec/21
i assumed n∈N what the questioner  also meant, i think.  if n∈Z, then 2^(n+1) >(n+2) sin n is  true for n≥−6.
iassumednNwhatthequestioneralsomeant,ithink.ifnZ,then2n+1>(n+2)sinnistrueforn6.

Leave a Reply

Your email address will not be published. Required fields are marked *