Menu Close

proof-that-2-n-1-lt-1-1-2-1-3-1-n-lt-2-n-




Question Number 36218 by Rio Mike last updated on 30/May/18
proof that    2((√n) − 1) < 1 + (1/( (√2) )) + (1/( (√3)))+...+  (1/( (√n))) < 2(√n)
proofthat2(n1)<1+12+13++1n<2n
Commented by abdo mathsup 649 cc last updated on 30/May/18
the function f(x)= (1/( (√x))) is decreasing on ]0,+∞[so  ∫_k ^(k+1) f(t)dt≤ f(k) ≤ ∫_(k−1) ^k f(t)dt ⇒  Σ_(k=1) ^n ∫_k ^(k+1) f(t)dt ≤ Σ_(k=1) ^n f(k) ≤ Σ_(k=1) ^n  ∫_(n−1) ^n  f(t)dt ⇒   ∫_1 ^(n+1) (dt/( (√t))) ≤ 1 +(1/( (√2))) +...+(1/( (√n)))≤  ∫_0 ^n  (dt/( (√t))) ⇒  [2(√t)]_1 ^(n+1)  ≤ 1 +(1/( (√2))) +....+(1/( (√n)))−≤ [2.(√n)]_0 ^n  ⇒  2{(√(n+1)) −1 }≤ 1 +(1/2) +...+(1/( (√n))) ≤ 2(√n) but  (√n_  )  ≤.(√(n+1))  ⇒  2{(√n)−1} ≤ 1+(1/2) +....+(1/( (√n))) ≤ 2(√n) .
thefunctionf(x)=1xisdecreasingon]0,+[sokk+1f(t)dtf(k)k1kf(t)dtk=1nkk+1f(t)dtk=1nf(k)k=1nn1nf(t)dt1n+1dtt1+12++1n0ndtt[2t]1n+11+12+.+1n[2.n]0n2{n+11}1+12++1n2nbutn.n+12{n1}1+12+.+1n2n.

Leave a Reply

Your email address will not be published. Required fields are marked *