Menu Close

Proof-that-4-cos-4-a-sin-4-a-cos-4-a-sin-4-a-3-cos-4a-sec-2a-




Question Number 116891 by bemath last updated on 07/Oct/20
Proof that ((4(cos^4 (a)+sin^4 (a)))/(cos^4 (a)−sin^4 (a))) = (3+cos (4a))sec (2a)
Proofthat4(cos4(a)+sin4(a))cos4(a)sin4(a)=(3+cos(4a))sec(2a)
Answered by john santu last updated on 07/Oct/20
⇒ ((4{(sin^2 a+cos^2 a)^2 −2sin^2 acos^2 a})/(cos^2 a−sin^2 a)) =  ((4(1−(1/2)sin^2 2a))/(cos 2a)) = ((4−2sin^2 2a)/(cos 2a))  = ((4−2((1/2)−(1/2)cos 4a))/(cos 2a)) = (3+cos 4a)sec 2a  proved
4{(sin2a+cos2a)22sin2acos2a}cos2asin2a=4(112sin22a)cos2a=42sin22acos2a=42(1212cos4a)cos2a=(3+cos4a)sec2aproved
Answered by Dwaipayan Shikari last updated on 07/Oct/20
((4(cos^4 a+sin^4 a))/((cos^2 a+sin^2 a)(cos^2 a−sin^2 a)))  =((4((cos^2 a+sin^2 a)^2 −2sin^2 acos^2 a))/(cos2a))  =((4(1−(1/2)sin^2 2a))/(cos2a))=((4−2sin^2 2a)/(cos2a))=((4−1+cos4a)/(cos2a))=(3+cos4a)sec2a
4(cos4a+sin4a)(cos2a+sin2a)(cos2asin2a)=4((cos2a+sin2a)22sin2acos2a)cos2a=4(112sin22a)cos2a=42sin22acos2a=41+cos4acos2a=(3+cos4a)sec2a

Leave a Reply

Your email address will not be published. Required fields are marked *