Question Number 55685 by tm888 last updated on 02/Mar/19

Answered by mr W last updated on 03/Mar/19
![let y=f(x)=Σ_(i=1) ^n (a_i /(a_i −x)) y′=Σ_(i=1) ^n (a_i /((a_i −x)^2 ))>0 ⇒the function is strickly increasing. lim_(x→a_k ^((−)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((−)) ) (a_i /(a_i −x))] =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((−)) ) (a_k /(a_k −x))=+∞ lim_(x→a_k ^((+)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((+)) ) (a_i /(a_i −x))] =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((+)) ) (a_k /(a_k −x))=−∞ that means for x∈(a_k ,a_(k+1) ) with k=1,2,...n−1 f(x) is strickly increasing lim_(x→a_k ) f(x)=lim_(x→a_k ^((+)) ) f(x)=−∞ lim_(x→a_(k+1) ) f(x)=lim_(x→a_(k+1) ^((−)) ) f(x)=+∞ i.e. f(x)=c has one and only root in (a_k ,a_(k+1) ) with c=any real number, e.g. 2015. lim_(x→−∞) f(x)=Σ_(i=1) ^n [lim_(x→−∞) (a_i /(a_i −x))]=+0 that means for x∈(−∞,a_1 ) f(x) is strickly increasing lim_(x→−∞) f(x)=+0 lim_(x→a_1 ) f(x)=lim_(x→a_1 ^((−)) ) f(x)=+∞ i.e. with c>0, e.g. c=2015 f(x)=c has one and only root in (−∞,a_1 ) lim_(x→+∞) f(x)=Σ_(i=1) ^n [lim_(x→+∞) (a_i /(a_i −x))]=−0 that means for x∈(a_n ,+∞) f(x) is strickly increasing lim_(x→a_n ) f(x)=lim_(x→a_1 ^((+)) ) f(x)=−∞ lim_(x→+∞) f(x)=−0 i.e. with c>0, e.g. c=2015 f(x)=c has no root in (a_n ,+∞) summary: f(x)=c>0,e.g. c=2015 has one and only one root in (−∞,a_1 ) one and only one root in (a_k ,a_(k+1) ) with k=1,2,...,n−1 no root in (a_n ,+∞) totally f(x)=c has exactly n roots.](https://www.tinkutara.com/question/Q55721.png)
Commented by otchereabdullai@gmail.com last updated on 03/Mar/19

Commented by mr W last updated on 03/Mar/19

Commented by mr W last updated on 03/Mar/19
