Menu Close

proof-that-i-1-n-a-i-a-i-x-2015-has-exactly-n-real-roots-o-lt-a-1-lt-a-n-




Question Number 55685 by tm888 last updated on 02/Mar/19
proof that   Σ_(i=1) ^n (a_i /(a_i −x))=2015 has exactly n real   roots.o<a_1 ....<a_n
proofthatni=1aiaix=2015hasexactlynrealroots.o<a1.<an
Answered by mr W last updated on 03/Mar/19
let y=f(x)=Σ_(i=1) ^n (a_i /(a_i −x))  y′=Σ_(i=1) ^n (a_i /((a_i −x)^2 ))>0  ⇒the function is strickly increasing.    lim_(x→a_k ^((−)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((−)) ) (a_i /(a_i −x))]  =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((−)) ) (a_k /(a_k −x))=+∞  lim_(x→a_k ^((+)) ) f(x)=Σ_(i=1) ^n [lim_(x→a_k ^((+)) ) (a_i /(a_i −x))]  =Σ_(i=1,≠k) ^n (a_i /(a_i −a_k ))+lim_(x→a_k ^((+)) ) (a_k /(a_k −x))=−∞  that means for x∈(a_k ,a_(k+1) ) with k=1,2,...n−1  f(x) is strickly increasing  lim_(x→a_k )  f(x)=lim_(x→a_k ^((+)) ) f(x)=−∞  lim_(x→a_(k+1) )  f(x)=lim_(x→a_(k+1) ^((−)) ) f(x)=+∞  i.e.  f(x)=c has one and only root in (a_k ,a_(k+1) )  with c=any real number, e.g. 2015.    lim_(x→−∞) f(x)=Σ_(i=1) ^n [lim_(x→−∞) (a_i /(a_i −x))]=+0  that means for x∈(−∞,a_1 )  f(x) is strickly increasing  lim_(x→−∞)  f(x)=+0  lim_(x→a_1 )  f(x)=lim_(x→a_1 ^((−)) ) f(x)=+∞  i.e. with c>0, e.g. c=2015  f(x)=c has one and only root in (−∞,a_1 )    lim_(x→+∞) f(x)=Σ_(i=1) ^n [lim_(x→+∞) (a_i /(a_i −x))]=−0  that means for x∈(a_n ,+∞)  f(x) is strickly increasing  lim_(x→a_n )  f(x)=lim_(x→a_1 ^((+)) ) f(x)=−∞  lim_(x→+∞)  f(x)=−0  i.e. with c>0, e.g. c=2015  f(x)=c has no root in (a_n ,+∞)    summary:  f(x)=c>0,e.g. c=2015 has  one and only one root in (−∞,a_1 )  one and only one root in (a_k ,a_(k+1) ) with k=1,2,...,n−1  no root in (a_n ,+∞)  totally f(x)=c has exactly n roots.
lety=f(x)=ni=1aiaixy=ni=1ai(aix)2>0thefunctionisstricklyincreasing.limxak()f(x)=ni=1[limxak()aiaix]=ni=1,kaiaiak+limxak()akakx=+limxak(+)f(x)=ni=1[limxak(+)aiaix]=ni=1,kaiaiak+limxak(+)akakx=thatmeansforx(ak,ak+1)withk=1,2,n1f(x)isstricklyincreasinglimxakf(x)=limxak(+)f(x)=limxak+1f(x)=limxak+1()f(x)=+i.e.f(x)=chasoneandonlyrootin(ak,ak+1)withc=anyrealnumber,e.g.2015.limxf(x)=ni=1[limxaiaix]=+0thatmeansforx(,a1)f(x)isstricklyincreasinglimxf(x)=+0limxa1f(x)=limxa1()f(x)=+i.e.withc>0,e.g.c=2015f(x)=chasoneandonlyrootin(,a1)limx+f(x)=ni=1[limx+aiaix]=0thatmeansforx(an,+)f(x)isstricklyincreasinglimxanf(x)=limxa1(+)f(x)=limx+f(x)=0i.e.withc>0,e.g.c=2015f(x)=chasnorootin(an,+)summary:f(x)=c>0,e.g.c=2015hasoneandonlyonerootin(,a1)oneandonlyonerootin(ak,ak+1)withk=1,2,,n1norootin(an,+)totallyf(x)=chasexactlynroots.
Commented by otchereabdullai@gmail.com last updated on 03/Mar/19
The great and ideal professor W
ThegreatandidealprofessorW
Commented by mr W last updated on 03/Mar/19
Commented by mr W last updated on 03/Mar/19
we can see  f(x)=Σ_(i=1) ^n (a_i /(a_i −x))=0 has exactly n−1 roots and  f(x)=Σ_(i=1) ^n (a_i /(a_i −x))=c≠0 has exactly n roots.
wecanseef(x)=ni=1aiaix=0hasexactlyn1rootsandf(x)=ni=1aiaix=c0hasexactlynroots.

Leave a Reply

Your email address will not be published. Required fields are marked *