Menu Close

proof-that-n-1-10-n-n-11-1-




Question Number 155803 by cortano last updated on 05/Oct/21
proof that    Σ_(n=1) ^(10) n×n! = 11!−1
proofthat10n=1n×n!=11!1
Answered by som(math1967) last updated on 05/Oct/21
1×1!+2×2!+3×3!+...+10×10! +1−1  =2+2×2!+3×3!+...+10×10!−1  =2!(1+2)+3×3!+4×4!+...+10×10!−1  =3!+3×3!+4×4!+...+10×10!−1  =3!(1+3)+4×4!+...+10×10!−1  =4!(1+4)+5×5!+...+10×10!−1  =5!(1+5)+...+10×10!−1  =...  =10!(1+10)−1=11!−1 [proved]
1×1!+2×2!+3×3!++10×10!+11=2+2×2!+3×3!++10×10!1=2!(1+2)+3×3!+4×4!++10×10!1=3!+3×3!+4×4!++10×10!1=3!(1+3)+4×4!++10×10!1=4!(1+4)+5×5!++10×10!1=5!(1+5)++10×10!1==10!(1+10)1=11!1[proved]
Answered by puissant last updated on 05/Oct/21
Σ_(n=1) ^(10) n×n! = Σ_(n=1) ^(10) (n+1−1)×n!  =Σ_(n=1) ^(10) (n+1)×n! − n!=Σ_(n=1) ^(10) {(n+1)!−n!}  =2!−1!+3!−2!+4!−3!+....+11!−10!  =11!−1!          ∴∵  Σ_(n=1) ^(10) n×n! = 11!−1..
10n=1n×n!=10n=1(n+11)×n!=10n=1(n+1)×n!n!=10n=1{(n+1)!n!}=2!1!+3!2!+4!3!+.+11!10!=11!1!∴∵10n=1n×n!=11!1..

Leave a Reply

Your email address will not be published. Required fields are marked *