Menu Close

prooove-that-0-1-




Question Number 25237 by Mr eaay last updated on 06/Dec/17
prooove that 0!=1
$${prooove}\:{that}\:\mathrm{0}!=\mathrm{1} \\ $$
Commented by prakash jain last updated on 07/Dec/17
It is a notation simplication  that defines empty products  as 1.  a_1 ∙a_2 ∙a_3 .…a_n =Π_(i=1) ^n P_n   P_n =n∙P_(n−1)   The above notation we define P_0 =1.  x^n =x∙x∙…x (n times)  x^n =x∙x^(n−1)   x^0  is an empty product=1  x^0  can also be seen as (x^n /x^n )=x^(n−n) =x^0 =1  n!=n∙(n−1)!  1!=1.0!   to have this relation true 0!=1.  All empty products evalute to 1. 0!  is an empty product which evaluates  to 1.
$$\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{notation}\:\mathrm{simplication} \\ $$$$\mathrm{that}\:\mathrm{defines}\:\mathrm{empty}\:\mathrm{products} \\ $$$$\mathrm{as}\:\mathrm{1}. \\ $$$${a}_{\mathrm{1}} \centerdot{a}_{\mathrm{2}} \centerdot{a}_{\mathrm{3}} .\ldots{a}_{{n}} =\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{P}_{{n}} \\ $$$${P}_{{n}} ={n}\centerdot{P}_{{n}−\mathrm{1}} \\ $$$$\mathrm{The}\:\mathrm{above}\:\mathrm{notation}\:\mathrm{we}\:\mathrm{define}\:{P}_{\mathrm{0}} =\mathrm{1}. \\ $$$${x}^{{n}} ={x}\centerdot{x}\centerdot\ldots{x}\:\left({n}\:{times}\right) \\ $$$${x}^{{n}} ={x}\centerdot{x}^{{n}−\mathrm{1}} \\ $$$${x}^{\mathrm{0}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{empty}\:\mathrm{product}=\mathrm{1} \\ $$$${x}^{\mathrm{0}} \:\mathrm{can}\:\mathrm{also}\:\mathrm{be}\:\mathrm{seen}\:\mathrm{as}\:\frac{{x}^{{n}} }{{x}^{{n}} }={x}^{{n}−{n}} ={x}^{\mathrm{0}} =\mathrm{1} \\ $$$${n}!={n}\centerdot\left({n}−\mathrm{1}\right)! \\ $$$$\mathrm{1}!=\mathrm{1}.\mathrm{0}!\: \\ $$$$\mathrm{to}\:\mathrm{have}\:\mathrm{this}\:\mathrm{relation}\:\mathrm{true}\:\mathrm{0}!=\mathrm{1}. \\ $$$$\mathrm{All}\:\mathrm{empty}\:\mathrm{products}\:\mathrm{evalute}\:\mathrm{to}\:\mathrm{1}.\:\mathrm{0}! \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{empty}\:\mathrm{product}\:\mathrm{which}\:\mathrm{evaluates} \\ $$$$\mathrm{to}\:\mathrm{1}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *