proporsed-by-m-n-july-1970-evaluate-n-1-H-n-n2-n-solution-recall-that-n-1-H-n-x-n-ln-1-x-x-1-H-n-x-n-n-0-x-H-n-t-n-1-dt-n-1-0-x-H-n-t-n-1-dt-0-x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 112217 by mathdave last updated on 06/Sep/20 proporsedbym.njuly1970evaluate∑∞n=1Hnn2nsolutionrecallthat∑∞n=1Hnxn=ln(1−x)x−1∵Hnxnn=∫0xHntn−1dt∑∞n=1∫0xHntn−1dt=∫0xln(1−t)t(t−1)dt∑∞n=1∫0xHntn−1dt=∫0xln(1−t)t−1dt−∫0xln(1−t)tdt=A−BletA=∫0xln(1−t)t−1dt=−∫0xln(1−t)1−tdtA=−[−ln2(1−t)]0x+∫0x−ln(1−t)1−tdt2A=ln2(1−x)A=12ln2(1−x)……(1)thenB=∫0xln(1−t)tdt=∫01ln(1−t)tdt+∫1xln(1−t)tdtB=−Li2(1)−[Li2(x)−Li2(1)]B=−Li2(x)….(2)butI=A−BI=∑∞n=1∫0xHntn−1dt=12ln2(2)+Li2(x)∵∑∞n=1Hnxnn=12ln2(2)+Li2(x)butx=12∑∞n=1Hnn2n=12ln2(2)+Li2(12)=12ln2(2)+π212−12ln2(2)∵∑∞n=1Hnn2n=π212bymathdave(06/09/2020) Commented by mnjuly1970 last updated on 06/Sep/20 thankyousomuchmrmathdave…grateful. Commented by Tawa11 last updated on 06/Sep/21 greatsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-46680Next Next post: Question-46686 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.