Menu Close

proporsed-by-m-n-july-1970-evaluate-n-1-H-n-n2-n-solution-recall-that-n-1-H-n-x-n-ln-1-x-x-1-H-n-x-n-n-0-x-H-n-t-n-1-dt-n-1-0-x-H-n-t-n-1-dt-0-x-




Question Number 112217 by mathdave last updated on 06/Sep/20
proporsed by m.n july 1970  evaluate  Σ_(n=1) ^∞ (H_n /(n2^n ))  solution   recall thatΣ_(n=1) ^∞ H_n x^n =((ln(1−x))/(x−1))  ∵((H_n x^n )/n)=∫_0 ^x H_n t^(n−1) dt  Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=∫_0 ^x ((ln(1−t))/(t(t−1)))dt  Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=∫_0 ^x ((ln(1−t))/(t−1))dt−∫_0 ^x ((ln(1−t))/t)dt=A−B  let A=∫_0 ^x ((ln(1−t))/(t−1))dt=−∫_0 ^x ((ln(1−t))/(1−t))dt  A=−[−ln^2 (1−t)]_0 ^x +∫_0 ^x −((ln(1−t))/(1−t))dt  2A=ln^2 (1−x)  A=(1/2)ln^2 (1−x)......(1)  then   B=∫_0 ^x ((ln(1−t))/t)dt=∫_0 ^1 ((ln(1−t))/t)dt+∫_1 ^x ((ln(1−t))/t)dt  B=−Li_2 (1)−[Li_2 (x)−Li_2 (1)]  B=−Li_2 (x)....(2)  but I=A−B  I=Σ_(n=1) ^∞ ∫_0 ^x H_n t^(n−1) dt=(1/2)ln^2 (2)+Li_2 (x)  ∵Σ_(n=1) ^∞ ((H_n x^n )/n)=(1/2)ln^2 (2)+Li_2 (x)  but  x=(1/2)  Σ_(n=1) ^∞ (H_n /(n2^n ))=(1/2)ln^2 (2)+Li_2 ((1/2))=(1/2)ln^2 (2)+(π^2 /(12))−(1/2)ln^2 (2)  ∵Σ_(n=1) ^∞ (H_n /(n2^n ))=(π^2 /(12))  by mathdave(06/09/2020)
proporsedbym.njuly1970evaluaten=1Hnn2nsolutionrecallthatn=1Hnxn=ln(1x)x1Hnxnn=0xHntn1dtn=10xHntn1dt=0xln(1t)t(t1)dtn=10xHntn1dt=0xln(1t)t1dt0xln(1t)tdt=ABletA=0xln(1t)t1dt=0xln(1t)1tdtA=[ln2(1t)]0x+0xln(1t)1tdt2A=ln2(1x)A=12ln2(1x)(1)thenB=0xln(1t)tdt=01ln(1t)tdt+1xln(1t)tdtB=Li2(1)[Li2(x)Li2(1)]B=Li2(x).(2)butI=ABI=n=10xHntn1dt=12ln2(2)+Li2(x)n=1Hnxnn=12ln2(2)+Li2(x)butx=12n=1Hnn2n=12ln2(2)+Li2(12)=12ln2(2)+π21212ln2(2)n=1Hnn2n=π212bymathdave(06/09/2020)
Commented by mnjuly1970 last updated on 06/Sep/20
thank you so much  mr   mathdave  ...grateful.
thankyousomuchmrmathdavegrateful.
Commented by Tawa11 last updated on 06/Sep/21
great sir
greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *