Prouver-que-a-b-a-b-a-b-0-1-x-a-1-1-x-b-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 113600 by eric last updated on 14/Sep/20 Prouverqueβ(a,b)=Γ(a)Γ(b)Γ(a+b)=∫01xa−1(1−x)b−1dx Answered by Dwaipayan Shikari last updated on 14/Sep/20 β(a,b)=∫01xa−1(1−x)b−1dxΓ(a)=∫0∞xa−1e−xdxΓ(b)=∫0∞yb−1e−ydyΓ(a+b)=∫0∞xa+b−1e−xdxΓ(a)Γ(b)=∫0∞∫0∞xa−1.yb−1e−(x+y)dydxx=vty=v(1−t)Γ(a)Γ(b)=∫0∞va+b−1e−v∫01ta−1(1−t)b−1dtΓ(a)Γ(b)=Γ(a+b)β(a,b)β(a,b)=Γ(a)Γ(b)Γ(a+b) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-A-0-1-1-x-2-1-x-2-dx-0-1-1-x-2-1-x-2-dx-Next Next post: 1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.