Question Number 113600 by eric last updated on 14/Sep/20
$${Prouver}\:{que} \\ $$$$\beta\left({a},{b}\right)=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx} \\ $$
Answered by Dwaipayan Shikari last updated on 14/Sep/20
$$\beta\left({a},{b}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{b}−\mathrm{1}} {dx} \\ $$$$\Gamma\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}−\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$\Gamma\left({b}\right)=\int_{\mathrm{0}} ^{\infty} {y}^{{b}−\mathrm{1}} {e}^{−{y}} {dy} \\ $$$$\Gamma\left({a}+{b}\right)=\int_{\mathrm{0}} ^{\infty} {x}^{{a}+{b}−\mathrm{1}} {e}^{−{x}} {dx} \\ $$$$\Gamma\left({a}\right)\Gamma\left({b}\right)=\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} {x}^{{a}−\mathrm{1}} .{y}^{{b}−\mathrm{1}} {e}^{−\left({x}+{y}\right)} {dydx} \\ $$$${x}={vt} \\ $$$${y}={v}\left(\mathrm{1}−{t}\right) \\ $$$$\Gamma\left({a}\right)\Gamma\left({b}\right)=\int_{\mathrm{0}} ^{\infty} {v}^{{a}+{b}−\mathrm{1}} {e}^{−{v}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{a}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{{b}−\mathrm{1}} {dt} \\ $$$$\Gamma\left({a}\right)\Gamma\left({b}\right)=\Gamma\left({a}+{b}\right)\beta\left({a},{b}\right) \\ $$$$\beta\left({a},{b}\right)=\frac{\Gamma\left({a}\right)\Gamma\left({b}\right)}{\Gamma\left({a}+{b}\right)} \\ $$