Menu Close

Prouver-que-a-b-a-b-a-b-0-1-x-a-1-1-x-b-1-dx-




Question Number 113600 by eric last updated on 14/Sep/20
Prouver que  β(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx
Prouverqueβ(a,b)=Γ(a)Γ(b)Γ(a+b)=01xa1(1x)b1dx
Answered by Dwaipayan Shikari last updated on 14/Sep/20
β(a,b)=∫_0 ^1 x^(a−1) (1−x)^(b−1) dx  Γ(a)=∫_0 ^∞ x^(a−1) e^(−x) dx  Γ(b)=∫_0 ^∞ y^(b−1) e^(−y) dy  Γ(a+b)=∫_0 ^∞ x^(a+b−1) e^(−x) dx  Γ(a)Γ(b)=∫_0 ^∞ ∫_0 ^∞ x^(a−1) .y^(b−1) e^(−(x+y)) dydx  x=vt  y=v(1−t)  Γ(a)Γ(b)=∫_0 ^∞ v^(a+b−1) e^(−v) ∫_0 ^1 t^(a−1) (1−t)^(b−1) dt  Γ(a)Γ(b)=Γ(a+b)β(a,b)  β(a,b)=((Γ(a)Γ(b))/(Γ(a+b)))
β(a,b)=01xa1(1x)b1dxΓ(a)=0xa1exdxΓ(b)=0yb1eydyΓ(a+b)=0xa+b1exdxΓ(a)Γ(b)=00xa1.yb1e(x+y)dydxx=vty=v(1t)Γ(a)Γ(b)=0va+b1ev01ta1(1t)b1dtΓ(a)Γ(b)=Γ(a+b)β(a,b)β(a,b)=Γ(a)Γ(b)Γ(a+b)

Leave a Reply

Your email address will not be published. Required fields are marked *