Menu Close

prove-0-1-ln-2-1-x-2-x-2-dx-pi-2-3-4ln-2-2-solution-technical-method-0-1-ln-2-1-x-2-d-1-1-x-




Question Number 166373 by mnjuly1970 last updated on 19/Feb/22
             prove         ๐›—=โˆซ_0 ^( 1) (( ln^( 2) (1โˆ’x^( 2) ) )/x^( 2) ) dx =(ฯ€^( 2) /3) โˆ’4ln^( 2) (2)        โˆ’โˆ’โˆ’  solution (technical method) โˆ’โˆ’โˆ’      ๐›—= โˆซ_0 ^( 1) ln^( 2) (1โˆ’x^( 2) )d(1โˆ’(1/x))          = [(1โˆ’(1/x))ln^( 2) (1โˆ’x^( 2) )]_0 ^1 +4โˆซ_0 ^( 1) (1โˆ’(1/x))((xln(1โˆ’x^( 2) ))/(1โˆ’x^( 2) ))dx         = โˆ’4โˆซ_0 ^( 1) ((ln(1โˆ’x^( 2) ))/(1+x)) dx          = โˆ’4โˆซ_0 ^( 1) ((ln(1+x))/(1+x))dx โˆ’4โˆซ_0 ^( 1) ((ln(1โˆ’x)dx)/(1+x))        = โˆ’2ln^( 2) (2) โˆ’4 ( โˆ’(ฯ€^( 2) /(12)) +(1/2)ln^( 2) (2))       โˆด        ๐›—= (ฯ€^( 2) /3) โˆ’4ln^( 2) (2)          โ–   m.n
proveฯ•=โˆซ01ln2(1โˆ’x2)x2dx=ฯ€23โˆ’4ln2(2)โˆ’โˆ’โˆ’solution(technicalmethod)โˆ’โˆ’โˆ’ฯ•=โˆซ01ln2(1โˆ’x2)d(1โˆ’1x)=[(1โˆ’1x)ln2(1โˆ’x2)]01+4โˆซ01(1โˆ’1x)xln(1โˆ’x2)1โˆ’x2dx=โˆ’4โˆซ01ln(1โˆ’x2)1+xdx=โˆ’4โˆซ01ln(1+x)1+xdxโˆ’4โˆซ01ln(1โˆ’x)dx1+x=โˆ’2ln2(2)โˆ’4(โˆ’ฯ€212+12ln2(2))โˆดฯ•=ฯ€23โˆ’4ln2(2)โ—ผm.n

Leave a Reply

Your email address will not be published. Required fields are marked *