Menu Close

prove-0-1-t-n-2-t-1-n-2-ln-1-t-t-H-n-1-t-t-1-dt-H-n-1-2-H-n-2-2-




Question Number 114146 by Eric002 last updated on 17/Sep/20
prove  ∫_0 ^1 ((t^(n+2) φ(t,1,n+2)+ln(1−t)+t H_(n+1) )/(t(t−1)))dt  =((H_(n+1) ^((2)) −(H_n )^2 )/2)
$${prove} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{n}+\mathrm{2}} \phi\left({t},\mathrm{1},{n}+\mathrm{2}\right)+{ln}\left(\mathrm{1}−{t}\right)+{t}\:{H}_{{n}+\mathrm{1}} }{{t}\left({t}−\mathrm{1}\right)}{dt} \\ $$$$=\frac{{H}_{{n}+\mathrm{1}} ^{\left(\mathrm{2}\right)} −\left({H}_{{n}} \right)^{\mathrm{2}} }{\mathrm{2}} \\ $$
Commented by mindispower last updated on 18/Sep/20
φ(t,1,n+2)  is what function ?
$$\phi\left({t},\mathrm{1},{n}+\mathrm{2}\right)\:\:{is}\:{what}\:{function}\:? \\ $$
Commented by Eric002 last updated on 18/Sep/20
lerch transcendent
$${lerch}\:{transcendent}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *