Menu Close

prove-0-1-x-5-x-4-x-3-x-2-x-1-dx-pi-3-3-




Question Number 158405 by Eric002 last updated on 03/Nov/21
prove:  ∫_0 ^∞  (1/(x^5 +x^4 +x^3 +x^2 +x+1))dx=(π/(3(√3)))
prove:01x5+x4+x3+x2+x+1dx=π33
Answered by MJS_new last updated on 03/Nov/21
x^5 +x^4 +x^3 +x^2 +x+1=((x^6 −1)/(x−1))  ⇒  ∫(dx/(x^5 +x^4 +x^3 +x^2 +x+1))=  =∫(dx/((x+1)(x^2 +x+1)(x^2 +x+1)))=  =(1/3)∫(dx/(x+1))+(1/2)∫(dx/(x^2 +x+1))−(1/6)∫((2x−1)/(x^2 −x+1))=  =(1/3)ln ∣x+1∣ +((√3)/3)arctan ((2x+1)/( (√3))) −(1/6)ln (x^2 −x+1) +C  ⇒  ∫_0 ^∞ (dx/(x^5 +x^4 +x^3 +x^2 +x+1))=(π/(3(√3)))
x5+x4+x3+x2+x+1=x61x1dxx5+x4+x3+x2+x+1==dx(x+1)(x2+x+1)(x2+x+1)==13dxx+1+12dxx2+x+1162x1x2x+1==13lnx+1+33arctan2x+1316ln(x2x+1)+C0dxx5+x4+x3+x2+x+1=π33
Commented by Eric002 last updated on 03/Nov/21
well done
welldone
Commented by Tawa11 last updated on 04/Nov/21
Great sir
Greatsir
Answered by Ar Brandon last updated on 03/Nov/21
I=∫_0 ^∞ (dx/(x^5 +x^4 +x^3 +x^2 +x+1))=∫_0 ^∞ ((1−x)/(1−x^6 ))dx    =∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_1 ^∞ ((1−x)/(1−x^6 ))dx=∫_0 ^1 ((1−x)/(1−x^6 ))dx+∫_0 ^1 ((x^3 −x^4 )/(1−x^6 ))dx    =∫_0 ^1 ((1−x+x^3 −x^4 )/(1−x^6 ))dx=(1/6)∫_0 ^1 ((v^(−(5/6)) −v^(−(4/6)) +v^(−(2/6)) −v^(−(1/6)) )/(1−v))dv    =(1/6)[−ψ((1/6))+ψ((2/6))−ψ((4/6))+ψ((5/6))]    =(1/6)[(ψ((5/6))−ψ((1/6)))+(ψ((1/3))−ψ((2/3)))]    =(1/6)[−πcot((5/6)π)−πcot((π/3))]=(1/6)[π(√3)−(π/( (√3)))]=((2(√3)π)/(18))=((√3)/9)π
I=0dxx5+x4+x3+x2+x+1=01x1x6dx=011x1x6dx+11x1x6dx=011x1x6dx+01x3x41x6dx=011x+x3x41x6dx=1601v56v46+v26v161vdv=16[ψ(16)+ψ(26)ψ(46)+ψ(56)]=16[(ψ(56)ψ(16))+(ψ(13)ψ(23))]=16[πcot(56π)πcot(π3)]=16[π3π3]=23π18=39π
Commented by Ar Brandon last updated on 03/Nov/21
    Φ=∫_1 ^∞ ((1−x)/(1−x^6 ))dx, u=(1/x)⇒x=(1/u)⇒dx=−(1/u^2 )du  ⇒Φ=∫_0 ^1 ((1−(1/u))/(1−(1/u^6 )))∙(du/u^6 )=∫_0 ^1 ((u^4 −u^3 )/(u^6 −1))du=∫_0 ^1 ((x^3 −x^4 )/(1−x^6 ))dx
Φ=11x1x6dx,u=1xx=1udx=1u2duΦ=0111u11u6duu6=01u4u3u61du=01x3x41x6dx

Leave a Reply

Your email address will not be published. Required fields are marked *