Menu Close

prove-0-1-x-x-2-1-x-ln-x-dx-ln-4-pi-




Question Number 165152 by mnjuly1970 last updated on 26/Jan/22
              prove       Ω=∫_0 ^( 1) (( x − x^( 2) )/((1+x )ln(x))) dx = ln((4/π) )     −−−−−
proveΩ=01xx2(1+x)ln(x)dx=ln(4π)
Answered by mindispower last updated on 26/Jan/22
f(a)=∫_0 ^1 ((x−x^(a+1) )/((1+x)ln(x)))dx,f(0)=0  Ω must bee <0 ln((4/π))>0  f′(a)=∫_0 ^1 ((−x^(1+a) )/(1+x))  =∫_0 ^1 ((x^(2+a) −x^(1+a) )/(1−x^2 ))dx  =(1/2)∫_0 ^1 ((t^((a+1)/2) −t^(a/2) )/(1−t)) .dt  recall Ψ(z+1)=−γ+∫_0 ^1 ((1−x^z )/(1−x))dx  f^′ (a)=(1/2){Ψ((a/2)+1)−Ψ(((a+3)/2))}  f(a)=ln(((Γ(((a+2)/2)))/(Γ(((a+3)/2)))))+c  f(0)=0⇒c=−ln((2/( (√π))))=ln(((√π)/2))  Ω=f(1)=ln((((√π)/2)/1))=ln(((√π)/2))+ln(((√π)/2))=ln((π/4))  Ω=ln((π/4))
f(a)=01xxa+1(1+x)ln(x)dx,f(0)=0Ωmustbee<0ln(4π)>0f(a)=01x1+a1+x=01x2+ax1+a1x2dx=1201ta+12ta21t.dtrecallΨ(z+1)=γ+011xz1xdxf(a)=12{Ψ(a2+1)Ψ(a+32)}f(a)=ln(Γ(a+22)Γ(a+32))+cf(0)=0c=ln(2π)=ln(π2)Ω=f(1)=ln(π21)=ln(π2)+ln(π2)=ln(π4)Ω=ln(π4)
Commented by mnjuly1970 last updated on 27/Jan/22
    thanks alot sir power ..grateful
thanksalotsirpower..grateful
Commented by mindispower last updated on 27/Jan/22
wthe Pleasur Have a nice Day
wthePleasurHaveaniceDay

Leave a Reply

Your email address will not be published. Required fields are marked *