Question Number 165152 by mnjuly1970 last updated on 26/Jan/22
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}\:−\:{x}^{\:\mathrm{2}} }{\left(\mathrm{1}+{x}\:\right){ln}\left({x}\right)}\:{dx}\:=\:{ln}\left(\frac{\mathrm{4}}{\pi}\:\right) \\ $$$$\:\:\:−−−−− \\ $$
Answered by mindispower last updated on 26/Jan/22
$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{x}^{{a}+\mathrm{1}} }{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)}{dx},{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\Omega\:{must}\:{bee}\:<\mathrm{0}\:{ln}\left(\frac{\mathrm{4}}{\pi}\right)>\mathrm{0} \\ $$$${f}'\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{x}^{\mathrm{1}+{a}} }{\mathrm{1}+{x}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}+{a}} −{x}^{\mathrm{1}+{a}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{a}+\mathrm{1}}{\mathrm{2}}} −{t}^{\frac{{a}}{\mathrm{2}}} }{\mathrm{1}−{t}}\:.{dt} \\ $$$${recall}\:\Psi\left({z}+\mathrm{1}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{z}} }{\mathrm{1}−{x}}{dx} \\ $$$${f}^{'} \left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{{a}+\mathrm{3}}{\mathrm{2}}\right)\right\} \\ $$$${f}\left({a}\right)={ln}\left(\frac{\Gamma\left(\frac{{a}+\mathrm{2}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{a}+\mathrm{3}}{\mathrm{2}}\right)}\right)+{c} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow{c}=−{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\right)={ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right) \\ $$$$\Omega={f}\left(\mathrm{1}\right)={ln}\left(\frac{\frac{\sqrt{\pi}}{\mathrm{2}}}{\mathrm{1}}\right)={ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)+{ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)={ln}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Omega={ln}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 27/Jan/22
$$\:\:\:\:{thanks}\:{alot}\:{sir}\:{power}\:..{grateful} \\ $$$$\:\: \\ $$
Commented by mindispower last updated on 27/Jan/22
$${wthe}\:{Pleasur}\:{Have}\:{a}\:{nice}\:{Day} \\ $$