Menu Close

prove-0-2-log-sinx-dx-pi-2-log-1-2-




Question Number 179852 by arup last updated on 03/Nov/22
prove     ∫_0 ^(𝛑/2) log(sinx)dx=(π/2)log(1/2)
prove0π2log(sinx)dx=π2log12
Commented by som(math1967) last updated on 03/Nov/22
I=∫_0 ^(π/2) log[sin((π/2)−x)]dx  2I=∫_0 ^(π/2) log(sinx)+log(cosx)dx   =∫_0 ^(π/2) log(((2sinxcosx)/2))dx  2I=∫_0 ^(π/2) log(sin2x)dx−∫_0 ^(π/2) log2dx  2I=∫_0 ^(π/2) log(sin2x)dx−(π/2)log2   let 2x=t  2I=(1/2)∫_0 ^π log(sint)dt−(π/2)log2  2I=(1/2)×2∫_0 ^(π/2) log(sint)dt−(π/2)log2   [∫_0 ^(2a) f(x)dx=2∫_0 ^a f(x)dx  if (2a−x)=f(x)]  2I=∫_0 ^(π/2) log(sint)dt+(π/2)log(1/2)  2I=∫_0 ^(π/2) log(sinx)dx+(π/2)log(1/2)  [ ∫_a ^b f(t)dt=∫_a ^b f(x)dx]  2I−I=(π/2)log(1/2)  ∴ I=(π/2)log_e (1/2)
I=0π2log[sin(π2x)]dx2I=0π2log(sinx)+log(cosx)dx=0π2log(2sinxcosx2)dx2I=0π2log(sin2x)dx0π2log2dx2I=0π2log(sin2x)dxπ2log2let2x=t2I=120πlog(sint)dtπ2log22I=12×20π2log(sint)dtπ2log2[02af(x)dx=20af(x)dxif(2ax)=f(x)]2I=0π2log(sint)dt+π2log122I=0π2log(sinx)dx+π2log12[abf(t)dt=abf(x)dx]2II=π2log12I=π2loge12
Commented by Frix last updated on 03/Nov/22
can′t prove it but it′s the same as  ∫_0 ^(π/2) (x/(tan x))dx
cantproveitbutitsthesameasπ20xtanxdx
Commented by som(math1967) last updated on 03/Nov/22
 am i correct ?
amicorrect?
Commented by CElcedricjunior last updated on 03/Nov/22
∫_0 ^(𝛑/2) log(sinx)dx=(𝛑/2)log(1/2)  k=∫_0 ^(𝛑/2) log(sinx)dx  on ae  sinx=cos((𝛑/2)−x)  k=∫_0 ^(𝛑/2) log(cos(−x+(𝛑/2)))dx  posons− x+(𝛑/2)=t⇔dx=−dt  qd: { ((x−>0)),((x−>𝛑/2)) :}=> { ((t−>𝛑/2)),((t−>0)) :}  k=∫_0 ^(𝛑/2) log(cost)dt=l  =>k−l=0  k+l=∫_0 ^(𝛑/2) log(sinxcosx)dx          =∫_0 ^(𝛑/2) [log((1/2))+log(sin2x)]dx          =∫_0 ^(𝛑/2) log(sin2x)dx+[x]_0 ^(𝛑/2) log((1/2))  k+l=(𝛑/2)log((1/2))+∫_0 ^(𝛑/2) log(sin2x)dx  k+l=(𝛑/2)log((1/2))+∫_0 ^(𝛑/2) log(cos(2x−(𝛑/2)))dx  posons 2x−(𝛑/2)=t=>dx=(1/2)dt  qd: { ((x−>0)),((x−>𝛑/2)) :}=> { ((t−>−(𝛑/2))),((t−>(𝛑/2))) :}  k+l=(𝛑/2)log((1/2))+(1/2)∫_(−(𝛑/2)) ^(𝛑/2) log(cost)dt  k+l=(𝛑/2)log(1/2)+∫_0 ^(𝛑/2) log(cost)dt  k+l=(𝛑/2)log(1/2)+l  =>k=(𝛑/2)log((1/2))  ∫_0 ^(𝛑/2) log(sinx)dx=(𝛑/2)log((1/2))  .......................le celebre cedric junior......
0π2log(sinx)dx=π2log12k=0π/2log(sinx)dxonaesinx=cos(π2x)k=0π/2log(cos(x+π2))dxposonsx+π2=tdx=dtqd:{x>0x>π/2=>{t>π/2t>0k=0π/2log(cost)dt=l=>kl=0k+l=0π/2log(sinxcosx)dx=0π/2[log(12)+log(sin2x)]dx=0π/2log(sin2x)dx+[x]0π2log(12)k+l=π2log(12)+0π/2log(sin2x)dxk+l=π2log(12)+0π/2log(cos(2xπ2))dxposons2xπ2=t=>dx=12dtqd:{x>0x>π/2=>{t>π2t>π2k+l=π2log(12)+12π2π/2log(cost)dtk+l=π2log(1/2)+0π/2log(cost)dtk+l=π2log(1/2)+l=>k=π2log(12)0π2log(sinx)dx=π2log(12)..lecelebrecedricjunior

Leave a Reply

Your email address will not be published. Required fields are marked *