Question Number 179852 by arup last updated on 03/Nov/22
$$\boldsymbol{{prove}}\:\:\:\:\:\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\boldsymbol{{sinx}}\right)\boldsymbol{{dx}}=\frac{\pi}{\mathrm{2}}\boldsymbol{{log}}\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by som(math1967) last updated on 03/Nov/22
$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left[{sin}\left(\frac{\pi}{\mathrm{2}}β{x}\right)\right]{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right)+{log}\left({cosx}\right){dx} \\ $$$$\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\frac{\mathrm{2}{sinxcosx}}{\mathrm{2}}\right){dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\mathrm{2}{x}\right){dx}β\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\mathrm{2}{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}\mathrm{2}{x}\right){dx}β\frac{\pi}{\mathrm{2}}{log}\mathrm{2} \\ $$$$\:{let}\:\mathrm{2}{x}={t} \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} {log}\left({sint}\right){dt}β\frac{\pi}{\mathrm{2}}{log}\mathrm{2} \\ $$$$\mathrm{2}{I}=\frac{\mathrm{1}}{\mathrm{2}}Γ\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sint}\right){dt}β\frac{\pi}{\mathrm{2}}{log}\mathrm{2} \\ $$$$\:\left[\int_{\mathrm{0}} ^{\mathrm{2}{a}} {f}\left({x}\right){dx}=\mathrm{2}\int_{\mathrm{0}} ^{{a}} {f}\left({x}\right){dx}\right. \\ $$$$\left.{if}\:\left(\mathrm{2}{a}β{x}\right)={f}\left({x}\right)\right] \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sint}\right){dt}+\frac{\pi}{\mathrm{2}}{log}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right){dx}+\frac{\pi}{\mathrm{2}}{log}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left[\:\int_{{a}} ^{{b}} {f}\left({t}\right){dt}=\int_{{a}} ^{{b}} {f}\left({x}\right){dx}\right] \\ $$$$\mathrm{2}{I}β{I}=\frac{\pi}{\mathrm{2}}{log}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\therefore\:{I}=\frac{\pi}{\mathrm{2}}{log}_{{e}} \frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by Frix last updated on 03/Nov/22
$$\mathrm{can}'\mathrm{t}\:\mathrm{prove}\:\mathrm{it}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as} \\ $$$$\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{{x}}{\mathrm{tan}\:{x}}{dx} \\ $$
Commented by som(math1967) last updated on 03/Nov/22
$$\:{am}\:{i}\:{correct}\:? \\ $$
Commented by CElcedricjunior last updated on 03/Nov/22
$$\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\boldsymbol{{sinx}}\right)\boldsymbol{\mathrm{dx}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{sinx}}\right)\boldsymbol{\mathrm{dx}} \\ $$$$\boldsymbol{{on}}\:\boldsymbol{{ae}}\:\:\boldsymbol{{sinx}}=\boldsymbol{{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{2}}β\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{cos}}\left(β\boldsymbol{{x}}+\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)\right)\boldsymbol{{dx}} \\ $$$$\boldsymbol{{posons}}β\:\boldsymbol{\mathrm{x}}+\frac{\boldsymbol{\pi}}{\mathrm{2}}=\boldsymbol{{t}}\Leftrightarrow\boldsymbol{{dx}}=β\boldsymbol{{dt}} \\ $$$$\boldsymbol{{qd}}:\begin{cases}{\boldsymbol{{x}}β>\mathrm{0}}\\{\boldsymbol{{x}}β>\boldsymbol{\pi}/\mathrm{2}}\end{cases}=>\begin{cases}{\boldsymbol{{t}}β>\boldsymbol{\pi}/\mathrm{2}}\\{\boldsymbol{{t}}β>\mathrm{0}}\end{cases} \\ $$$$\boldsymbol{{k}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{cost}}\right)\boldsymbol{{dt}}=\boldsymbol{{l}} \\ $$$$=>\boldsymbol{{k}}β\boldsymbol{{l}}=\mathrm{0} \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{sinxcosx}}\right)\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \left[\boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\boldsymbol{{log}}\left(\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}\right)\right]\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}\right)\boldsymbol{{dx}}+\left[\boldsymbol{{x}}\right]_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}\right)\boldsymbol{{dx}} \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{cos}}\left(\mathrm{2}\boldsymbol{{x}}β\frac{\boldsymbol{\pi}}{\mathrm{2}}\right)\right)\boldsymbol{{dx}} \\ $$$$\boldsymbol{{poson}}{s}\:\mathrm{2}\boldsymbol{{x}}β\frac{\boldsymbol{\pi}}{\mathrm{2}}=\boldsymbol{{t}}=>\boldsymbol{{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{{dt}} \\ $$$$\boldsymbol{{qd}}:\begin{cases}{\boldsymbol{{x}}β>\mathrm{0}}\\{\boldsymbol{{x}}β>\boldsymbol{\pi}/\mathrm{2}}\end{cases}=>\begin{cases}{\boldsymbol{{t}}β>β\frac{\boldsymbol{\pi}}{\mathrm{2}}}\\{\boldsymbol{{t}}β>\frac{\boldsymbol{\pi}}{\mathrm{2}}}\end{cases} \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\int_{β\frac{\boldsymbol{\pi}}{\mathrm{2}}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{cost}}\right)\boldsymbol{{dt}} \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\mathrm{1}/\mathrm{2}\right)+\int_{\mathrm{0}} ^{\boldsymbol{\pi}/\mathrm{2}} \boldsymbol{{log}}\left(\boldsymbol{{cost}}\right)\boldsymbol{{dt}} \\ $$$$\boldsymbol{{k}}+\boldsymbol{{l}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\mathrm{1}/\mathrm{2}\right)+\boldsymbol{{l}} \\ $$$$=>\boldsymbol{{k}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \boldsymbol{{log}}\left(\boldsymbol{{sinx}}\right)\boldsymbol{{dx}}=\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{log}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$…………………..{le}\:{celebre}\:{cedric}\:{junior}…… \\ $$$$ \\ $$$$ \\ $$