Question Number 98677 by PRITHWISH SEN 2 last updated on 15/Jun/20
$$\mathrm{prove} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{a}} \frac{\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{ax}}\right)}{\mathrm{1}+\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{ln}}\left(\mathrm{1}+\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)\mathrm{tan}^{−\mathrm{1}} \boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{a}}>\mathrm{0} \\ $$
Answered by maths mind last updated on 15/Jun/20
$${f}\left({t}\right)=\int_{\mathrm{0}} ^{{a}} \frac{{ln}\left(\mathrm{1}+{tx}\right)}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$${f}'\left({t}\right)=\int_{\mathrm{0}} ^{{a}} \frac{{xdx}}{\left(\mathrm{1}+{tx}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{{a}} \frac{\left({x}+{t}\right)\left(\mathrm{1}+{tx}\right)−{t}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{tx}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$=\int_{\mathrm{0}} ^{{a}} \frac{{x}+{t}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}−\int_{\mathrm{0}} ^{{a}} \frac{{tdx}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{tx}\right)} \\ $$$$=\frac{{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\frac{{tarctan}\left({a}\right)}{{t}^{\mathrm{2}} +\mathrm{1}}−\frac{{ln}\left(\mathrm{1}+{ta}\right)}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{{a}} \frac{{ln}\left(\mathrm{1}+{ta}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{{a}} {f}\left({t}\right){dt}\Rightarrow{f}\left({a}\right)=\int\left(\frac{{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{arctan}\left({a}\right)−\frac{{ln}\left(\mathrm{1}+{ta}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\right){dt} \\ $$$$\Rightarrow\mathrm{2}{f}\left({a}\right)=\int_{\mathrm{0}} ^{{a}} \left(\frac{{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}+\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}{arctan}\left({a}\right)\right){dt} \\ $$$$=\frac{{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{\mathrm{2}}{arctan}\left({a}\right)+\frac{{arctan}\left({a}\right)}{\mathrm{2}}{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow{f}\left({a}\right)=\frac{{ln}\left(\mathrm{1}+{a}^{\mathrm{2}} \right)}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left({a}\right) \\ $$
Commented by PRITHWISH SEN 2 last updated on 16/Jun/20
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$