Menu Close

prove-0-a-ln-1-ax-1-x-2-dx-1-2-ln-1-a-2-tan-1-a-a-gt-0-




Question Number 98677 by PRITHWISH SEN 2 last updated on 15/Jun/20
prove  ∫_0 ^a ((ln(1+ax))/(1+x^2 ))dx=(1/2)ln(1+a^2 )tan^(−1) a, a>0
prove0aln(1+ax)1+x2dx=12ln(1+a2)tan1a,a>0
Answered by maths mind last updated on 15/Jun/20
f(t)=∫_0 ^a ((ln(1+tx))/((1+x^2 )))  f′(t)=∫_0 ^a ((xdx)/((1+tx)(1+x^2 )))  =∫_0 ^a (((x+t)(1+tx)−t(1+x^2 ))/((1+t^2 )(1+tx)(1+x^2 )))  =∫_0 ^a ((x+t)/((1+t^2 )(1+x^2 )))dx−∫_0 ^a ((tdx)/((1+t^2 )(1+tx)))  =((ln(1+a^2 ))/(2(1+t^2 )))+((tarctan(a))/(t^2 +1))−((ln(1+ta))/(1+t^2 ))  f(0)=0  f(a)=∫_0 ^a ((ln(1+ta))/(1+t^2 ))dt  f(a)=∫_0 ^a f(t)dt⇒f(a)=∫(((ln(1+a^2 ))/(2(1+t^2 )))+(t/(t^2 +1))arctan(a)−((ln(1+ta))/(1+t^2 )))dt  ⇒2f(a)=∫_0 ^a (((ln(1+a^2 ))/(2(1+t^2 )))+(t/(t^2 +1))arctan(a))dt  =((ln(1+a^2 ))/2)arctan(a)+((arctan(a))/2)ln(1+a^2 )  ⇔f(a)=((ln(1+a^2 ))/2)tan^(−1) (a)
f(t)=0aln(1+tx)(1+x2)f(t)=0axdx(1+tx)(1+x2)=0a(x+t)(1+tx)t(1+x2)(1+t2)(1+tx)(1+x2)=0ax+t(1+t2)(1+x2)dx0atdx(1+t2)(1+tx)=ln(1+a2)2(1+t2)+tarctan(a)t2+1ln(1+ta)1+t2f(0)=0f(a)=0aln(1+ta)1+t2dtf(a)=0af(t)dtf(a)=(ln(1+a2)2(1+t2)+tt2+1arctan(a)ln(1+ta)1+t2)dt2f(a)=0a(ln(1+a2)2(1+t2)+tt2+1arctan(a))dt=ln(1+a2)2arctan(a)+arctan(a)2ln(1+a2)f(a)=ln(1+a2)2tan1(a)
Commented by PRITHWISH SEN 2 last updated on 16/Jun/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *