Menu Close

prove-0-cot-1-1-x-2-1-2-1-2-pi-




Question Number 163400 by mnjuly1970 last updated on 06/Jan/22
       prove        Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) )  π
proveΩ=0cot1(1+x2)=(1212)π
Answered by Ar Brandon last updated on 06/Jan/22
Ω=∫cot^(−1) (1+x^2 )=xcot^(−1) (1+x^2 )+∫((2x^2 )/(x^4 +2x^2 +1))dx      =xcot^(−1) (1+x^2 )+∫(((x^2 +1)+(x^2 −1))/(x^4 +2x^2 +1))dx     =xcot^(−1) (1+x^2 )+∫((1+(1/x^2 ))/((x−(1/x))^2 +4))dx+∫((1−(1/x^2 ))/((x+(1/x))^2 ))dx     =xcot^(−1) (1+x^2 )+(1/2)tan^(−1) (((x^2 −1)/(2x)))−(x/(x^2 +1))+C
Ω=cot1(1+x2)=xcot1(1+x2)+2x2x4+2x2+1dx=xcot1(1+x2)+(x2+1)+(x21)x4+2x2+1dx=xcot1(1+x2)+1+1x2(x1x)2+4dx+11x2(x+1x)2dx=xcot1(1+x2)+12tan1(x212x)xx2+1+C
Answered by Kamel last updated on 07/Jan/22
     prove        Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) )  π          =2∫_0 ^(+∞) ((x^2 dx)/(1+(1+x^2 )^2 ))=^(t=x^2 ) ∫_0 ^(+∞) (((√t)dt)/(1+(1+t)^2 ))           =((√π)/2)∫_0 ^(+∞) ((sin(t)e^(−t) )/t^(3/2) )dt=((√π)/2)∫_1 ^(+∞) ∫_0 ^(+∞) ((sin(t))/( (√t)))e^(−at) dtda          =(√π)∫_1 ^(+∞) ∫_0 ^(+∞) sin(u^2 )e^(−au^2 ) duda         =(π/(4i))∫_1 ^(+∞) ((1/( (√(a−i))))−(1/( (√(a+i)))))da=(π/(2i))((√(1+i))−(√(1−i)))=π(√(√2))sin((π/8))  sin((π/8))=(√((1−cos((π/4)))/2))=(√(((√2)−1)/(2(√2))))=(1/( (√(√2))))(√((1/( (√2)))−(1/2)))  ∴  Ω=π(√((1/( (√2)))−(1/2)))
proveΩ=0cot1(1+x2)=(1212)π=20+x2dx1+(1+x2)2=t=x20+tdt1+(1+t)2=π20+sin(t)ett32dt=π21+0+sin(t)teatdtda=π1+0+sin(u2)eau2duda=π4i1+(1ai1a+i)da=π2i(1+i1i)=π2sin(π8)sin(π8)=1cos(π4)2=2122=121212Ω=π1212
Commented by mnjuly1970 last updated on 07/Jan/22
bravo...
bravo

Leave a Reply

Your email address will not be published. Required fields are marked *