prove-0-e-x-ln-x-1-4-1-m-n- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 150747 by mnjuly1970 last updated on 15/Aug/21 prove::Ω:=∫0∞e−x.ln(x4)=?1−γm.n.. Answered by Olaf_Thorendsen last updated on 15/Aug/21 Ω=∫0∞e−xln(x4)dxΩ=∫0∞e−uln(u)(2udu)Ω=∫0∞ue−ulnuduψ(z)=∫0∞yz−1lnye−ydy∫0∞yz−1e−ydyψ(2)=∫0∞y.lnye−ydy∫0∞ye−ydy=Ω∫0∞ye−ydy∫0∞ue−udu=[−ue−u]0∞+∫0∞e−udu=1⇒Ω=ψ(2)ψ(z+1)=ψ(z)+1zψ(2)=ψ(1)+11=−γ+1Ω=1−γ=ψ(2) Commented by mnjuly1970 last updated on 16/Aug/21 gratefulmrolaf.. Answered by mathmax by abdo last updated on 17/Aug/21 Ψ=∫0∞e−xln(x14)dx⇒Ψ=x=t∫0∞e−tln(t12)(2t)dt=2∫0∞t2ln(t)e−tdt=∫0∞te−tln(t)dt=∫0∞(tlnt)e−tdtbypartsu=tlntandv′=e−t=[−e−t(tlnt)]0∞−∫0∞(lnt+1)(−e−t)dt=0+∫0∞e−t(1+lnt)dt=∫0∞e−tdt+∫0∞e−tlntdt=1−γ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-smallest-positive-integer-n-so-that-1-2-2-2-3-2-n-2-is-divided-by-n-Next Next post: Question-19679 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.