Menu Close

prove-0-e-x-ln-x-1-4-1-m-n-




Question Number 150747 by mnjuly1970 last updated on 15/Aug/21
  prove ::                     Ω:=∫_0 ^( ∞) e^(−(√x)) .ln ((( x))^(1/4)  )=^?  1−γ   m.n..
prove::Ω:=0ex.ln(x4)=?1γm.n..
Answered by Olaf_Thorendsen last updated on 15/Aug/21
Ω = ∫_0 ^∞ e^(−(√x)) ln((x)^(1/4) ) dx  Ω = ∫_0 ^∞ e^(−u) ln((√u)) (2udu)  Ω = ∫_0 ^∞ ue^(−u) lnu du  ψ(z) = ((∫_0 ^∞ y^(z−1) lny e^(−y)  dy)/(∫_0 ^∞ y^(z−1) e^(−y)  dy))  ψ(2) = ((∫_0 ^∞ y.lny e^(−y)  dy)/(∫_0 ^∞ ye^(−y)  dy))  = (Ω/(∫_0 ^∞ ye^(−y)  dy))   ∫_0 ^∞ ue^(−u) du = [−ue^(−u) ]_0 ^∞ +∫_0 ^∞ e^(−u) du = 1  ⇒ Ω = ψ(2)    ψ(z+1) = ψ(z)+(1/z)  ψ(2) = ψ(1)+(1/1) = −γ+1    Ω = 1−γ = ψ(2)
Ω=0exln(x4)dxΩ=0euln(u)(2udu)Ω=0ueulnuduψ(z)=0yz1lnyeydy0yz1eydyψ(2)=0y.lnyeydy0yeydy=Ω0yeydy0ueudu=[ueu]0+0eudu=1Ω=ψ(2)ψ(z+1)=ψ(z)+1zψ(2)=ψ(1)+11=γ+1Ω=1γ=ψ(2)
Commented by mnjuly1970 last updated on 16/Aug/21
grateful mr olaf..
gratefulmrolaf..
Answered by mathmax by abdo last updated on 17/Aug/21
Ψ=∫_0 ^∞  e^(−(√x)) ln(x^(1/4) )dx ⇒Ψ=_((√x)=t)  ∫_0 ^∞ e^(−t) ln(t^(1/2) )(2t)dt  =2∫_0 ^∞  (t/2)ln(t)e^(−t)  dt =∫_0 ^∞  te^(−t) ln(t)dt  =∫_0 ^∞ (tlnt)e^(−t) dt  by parts u=tlnt and v^(′ ) =e^(−t)   =[−e^(−t) (tlnt)]_0 ^∞ −∫_0 ^∞ (lnt+1)(−e^(−t) )dt  =0+∫_0 ^∞ e^(−t) (1+lnt)dt =∫_0 ^∞ e^(−t)  dt +∫_0 ^∞ e^(−t) lnt dt  =1−γ
Ψ=0exln(x14)dxΨ=x=t0etln(t12)(2t)dt=20t2ln(t)etdt=0tetln(t)dt=0(tlnt)etdtbypartsu=tlntandv=et=[et(tlnt)]00(lnt+1)(et)dt=0+0et(1+lnt)dt=0etdt+0etlntdt=1γ

Leave a Reply

Your email address will not be published. Required fields are marked *