Menu Close

prove-0-ln-1-x-2-x-2-1-x-2-dx-pi-ln-e-2-




Question Number 151230 by mnjuly1970 last updated on 19/Aug/21
      prove:     ∫_0 ^( ∞) (( ln ( 1+x^( 2) ))/(x^( 2) (1+x^( 2) )))dx= π ln((e/2) ) ..
prove:0ln(1+x2)x2(1+x2)dx=πln(e2)..
Commented by Lordose last updated on 19/Aug/21
Commented by Lordose last updated on 19/Aug/21
Answered by Lordose last updated on 19/Aug/21
  Ω = ∫_0 ^( 1) ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx =^(P.F)  ∫_0 ^( 1) ((ln(1+x^2 ))/x^2 )dx − ∫_0 ^( 1) ((ln(1+x^2 ))/(1+x^2 ))dx  Ω = Φ − Ψ  Φ =^(IBP) −((ln(1+x^2 ))/x)∣_0^+  ^1  + ∫_0 ^( 1) (2/(1+x^2 ))dx  Φ = −log(2) + (𝛑/2)  Ψ = ∫_0 ^( 1) ((ln(1+x^2 ))/(1+x^2 ))dx =^(x=tan(y)) −2∫_0 ^(𝛑/4) ln(cos(y))dy  Ψ = 2∫_0 ^(𝛑/4) (Σ_(k=1) ^∞ (((−1)^k )/k)cos(2ky) + log(2))dy = 2Σ_(k=1) ^∞ (((−1)^k )/k)∫_0 ^(𝛑/4) cos(2ky)dy + 2log(2)∫_0 ^(𝛑/4) 1dy  Ψ = Σ_(k=1) ^∞ (((−1)^k sin(((𝛑k)/2)))/k^2 ) + ((𝛑log(2))/2)  Ψ = (𝛑/2)log(2) − G  Ω = (𝛑/2) − log(2) − (𝛑/2)log(2) + G  𝛀 = (𝛑/2) − log(2)(1 + (𝛑/2)) + G  G = Catalan′s Constant = Σ_(k=1) ^∞ (((−1)^k sin(((𝛑k)/2)))/k^2 )
Ω=01ln(1+x2)x2(1+x2)dx=P.F01ln(1+x2)x2dx01ln(1+x2)1+x2dxΩ=ΦΨΦ=IBPln(1+x2)x0+1+0121+x2dxΦ=log(2)+π2Ψ=01ln(1+x2)1+x2dx=x=tan(y)20π4ln(cos(y))dyΨ=20π4(k=1(1)kkcos(2ky)+log(2))dy=2k=1(1)kk0π4cos(2ky)dy+2log(2)0π41dyΨ=k=1(1)ksin(πk2)k2+πlog(2)2Ψ=π2log(2)GΩ=π2log(2)π2log(2)+GΩ=π2log(2)(1+π2)+GG=CatalansConstant=k=1(1)ksin(πk2)k2
Commented by mnjuly1970 last updated on 19/Aug/21
   thank you so much mr lordose     my mistake   Ω=∫_0 ^( ∞) ((ln(1+x^( 2) ))/(x^2 (1+x^( 2) )))dx        grateful...
thankyousomuchmrlordosemymistakeΩ=0ln(1+x2)x2(1+x2)dxgrateful
Answered by qaz last updated on 19/Aug/21
∫_0 ^1 ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx  =∫_0 ^1 ((ln(1+x^2 ))/x^2 )dx−∫_0 ^1 ((ln(1+x^2 ))/(1+x^2 ))dx  =−((ln(1+x^2 ))/x)∣_0 ^1 +∫_0 ^1 (2/(1+x^2 ))dx+2∫_0 ^(π/4) lncos xdx  =−ln2+(π/2)+∫_0 ^(π/2) lncos (x/2)dx  =−ln2+(π/2)+(1/2)∫_0 ^(π/2) ln((1+cos x)/2)dx  =−ln2+(π/2)+(1/2)∫_0 ^(π/2) ln((sin x)/(tan (x/2)))dx−(1/2)∫_0 ^(π/2) ln2dx  =−ln2+(π/2)−(π/2)ln2−∫_0 ^(π/4) lntan xdx  =−ln2+(π/2)−(π/2)ln2−∫_0 ^1 ((lnx)/(1+x^2 ))dx  =−ln2+(π/2)−(π/2)ln2−Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) lnxdx  =−ln2+(π/2)−(π/2)ln2−Σ_(n=0) ^∞ (((−1)^(n+1) )/((2n+1)^2 ))  =−ln2+(π/2)−(π/2)ln2+G
01ln(1+x2)x2(1+x2)dx=01ln(1+x2)x2dx01ln(1+x2)1+x2dx=ln(1+x2)x01+0121+x2dx+20π/4lncosxdx=ln2+π2+0π/2lncosx2dx=ln2+π2+120π/2ln1+cosx2dx=ln2+π2+120π/2lnsinxtanx2dx120π/2ln2dx=ln2+π2π2ln20π/4lntanxdx=ln2+π2π2ln201lnx1+x2dx=ln2+π2π2ln2n=0(1)n01x2nlnxdx=ln2+π2π2ln2n=0(1)n+1(2n+1)2=ln2+π2π2ln2+G
Answered by Lordose last updated on 19/Aug/21
  Ω = ∫_0 ^( ∞) ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx =^(x=tan(y)) −2∫_0 ^(𝛑/2) cot^2 yln(cos(y))dy  Ω = −2(∂/∂a)∣_(a=2) ∫_0 ^(𝛑/2) cos^a (y)sin^(−2) (y)dy  Ω = −(∂/∂a)∣_(a=2) (B(((a+1)/2),−(1/2))) = −(1/2)(𝛙^((0)) (((a+1)/2))−𝛙^((0)) ((a/2)))B(((a+1)/2),−(1/2))  𝛀 = (1/2)𝛑(𝛄 + 𝛙^((0)) ((3/2)))
Ω=0ln(1+x2)x2(1+x2)dx=x=tan(y)20π2cot2yln(cos(y))dyΩ=2aa=20π2cosa(y)sin2(y)dyΩ=aa=2(B(a+12,12))=12(ψ(0)(a+12)ψ(0)(a2))B(a+12,12)Ω=12π(γ+ψ(0)(32))
Answered by qaz last updated on 19/Aug/21
∫_0 ^∞ ((ln(1+x^2 ))/(x^2 (1+x^2 )))dx  =∫_0 ^(π/2) ((lnsec^2 x)/(tan^2 x))dx  =−2∫_0 ^(π/2) cot^2 xlncos xdx  =2∫_0 ^(π/2) (1−csc^2 x)lncos xdx  =−πln2−2∫_0 ^(π/2) csc^2 xlncos xdx  =−πln2+2cot xlncos x∣_0 ^(π/2) +2∫_0 ^(π/2) dx  =−πln2+π
0ln(1+x2)x2(1+x2)dx=0π/2lnsec2xtan2xdx=20π/2cot2xlncosxdx=20π/2(1csc2x)lncosxdx=πln220π/2csc2xlncosxdx=πln2+2cotxlncosx0π/2+20π/2dx=πln2+π
Commented by mnjuly1970 last updated on 19/Aug/21
thanks alot..
thanksalot..
Commented by peter frank last updated on 19/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *