Menu Close

prove-0-ln-2-x-ln-1-x-2-1-x-2-dx-7pi-4-3-pi-3-ln-2-4-where-3-is-a-pery-s-constant-




Question Number 130254 by Eric002 last updated on 23/Jan/21
prove  ∫_0 ^∞ ((ln^2 (x)ln(1+x^2 ))/(1+x^2 ))dx=((7π)/4)ζ(3)+((π^3 ln(2))/4)  where ζ(3) is a pery^( ,) s constant
prove0ln2(x)ln(1+x2)1+x2dx=7π4ζ(3)+π3ln(2)4whereζ(3)isapery,sconstant
Answered by mindispower last updated on 26/Jan/21
∫_0 ^(π/2) (ln^2 (sin(x))+ln^2 (cos^2 (x))−2ln(sin(x))ln(cos(x)).ln((1/(cos^2 (x))))dx  =−2∫_0 ^(π/2) ln^2 (sin(x))ln(cos(x))dx−2∫_0 ^(π/2) ln^3 (cos(x))dx  +4∫_0 ^(π/2) ln^2 (cos(x))ln(sin(x))dx=−2A−2B+4C  recall  β(a,b)=2∫_0 ^(π/2) cos^(2a−1) (x)sin^(2b−1) (x)dx  (∂^3 /(∂^2 b∂a))β((1/2),(1/2))=8A,(∂^3 /(∂^2 a∂b))β((1/2),(1/2))=8C  ((∂^3 β((1/2),(1/2)))/∂^3 a)=8B  ∂_a β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b))  ∂_a ^2 β(a,b)=β(a,b)(Ψ(a)−Ψ(a+b)^2 +(Ψ′(a)−Ψ′(a+b))β(a,b)  ∂_a ^2 ∂_b β(a,b)=β(a,b)(Ψ(b)−Ψ(a+b))(Ψ(a)−Ψ(a+b))^2   −2Ψ′(a+b)(Ψ(a)−Ψ(a+b))(Ψ(a)−Ψ(a+b))β(a,b)  +β(a,b)(Ψ(b)−Ψ(a+b)))(Ψ′(a)−Ψ′(a+b))  −Ψ′′(a+b)β(a,b))  ∂^2 a∂bβ((1/2_ ),(1/2))  i will finish?it later  Ψ((1/2)) can easly valuted  Ψ′(1)=ζ(2)=(π^2 /6)...=
0π2(ln2(sin(x))+ln2(cos2(x))2ln(sin(x))ln(cos(x)).ln(1cos2(x))dx=20π2ln2(sin(x))ln(cos(x))dx20π2ln3(cos(x))dx+40π2ln2(cos(x))ln(sin(x))dx=2A2B+4Crecallβ(a,b)=20π2cos2a1(x)sin2b1(x)dx32baβ(12,12)=8A,32abβ(12,12)=8C3β(12,12)3a=8Baβ(a,b)=β(a,b)(Ψ(a)Ψ(a+b))a2β(a,b)=β(a,b)(Ψ(a)Ψ(a+b)2+(Ψ(a)Ψ(a+b))β(a,b)a2bβ(a,b)=β(a,b)(Ψ(b)Ψ(a+b))(Ψ(a)Ψ(a+b))22Ψ(a+b)(Ψ(a)Ψ(a+b))(Ψ(a)Ψ(a+b))β(a,b)+β(a,b)(Ψ(b)Ψ(a+b)))(Ψ(a)Ψ(a+b))Ψ(a+b)β(a,b))2abβ(12,12)iwillfinish?itlaterΨ(12)caneaslyvalutedΨ(1)=ζ(2)=π26=

Leave a Reply

Your email address will not be published. Required fields are marked *