Menu Close

prove-0-pi-2-cos-x-cos-5x-1-2sin-x-3-2-




Question Number 189325 by mnjuly1970 last updated on 14/Mar/23
       prove      Ω= ∫_0 ^(π/2)  (( cos(x)+cos(5x))/(1+ 2sin(x))) =^( ?)  (3/2)
proveΩ=0π2cos(x)+cos(5x)1+2sin(x)=?32
Answered by Frix last updated on 15/Mar/23
∫_0 ^(π/2) ((cos 5x +cos x)/(1+2sin x))dx=^(t=sin x)   =2∫_0 ^1 (4t^3 −2t^2 −2t+1)dt=  =2[t^4 −((2t^3 )/3)−t^2 +t]_0 ^1 =(2/3)
π20cos5x+cosx1+2sinxdx=t=sinx=210(4t32t22t+1)dt==2[t42t33t2+t]01=23
Commented by mnjuly1970 last updated on 15/Mar/23
thankx alot sir frix
thankxalotsirfrix
Answered by cortano12 last updated on 15/Mar/23
 cos 5x+cos x=2cos 3x cos 2x   cos 3x=cos 2x cos x−sin 2x sin x  cos 3x = (1−4sin^2 x)cos x   Ω= ∫_0 ^( π/2)  ((2(1−2sin^2 x)(1−4sin^2 x)cos x)/(1+2sin x)) dx   = ∫_0 ^(π/2) 2(1−2sin^2 x)(1−2sin x)cos x dx   =2 ∫_0 ^(π/2) (1−2sin x−2sin^2 x+4sin^3 x)d(sin x)   =2(sin x−sin^2 x−(2/3)sin^3 x+sin^4 x)_0 ^(π/2)    =2(1−1−(2/3)+1)=(2/3)
cos5x+cosx=2cos3xcos2xcos3x=cos2xcosxsin2xsinxcos3x=(14sin2x)cosxΩ=0π/22(12sin2x)(14sin2x)cosx1+2sinxdx=π/202(12sin2x)(12sinx)cosxdx=2π/20(12sinx2sin2x+4sin3x)d(sinx)=2(sinxsin2x23sin3x+sin4x)0π/2=2(1123+1)=23
Commented by mnjuly1970 last updated on 15/Mar/23
   very nice sir cortano..
verynicesircortano..
Commented by Spillover last updated on 15/Mar/23
nice solution
nicesolution

Leave a Reply

Your email address will not be published. Required fields are marked *