Question Number 159931 by qaz last updated on 22/Nov/21
$$\mathrm{Prove}\:::\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{\mathrm{n}} \mathrm{x}}{\mathrm{x}^{\mathrm{m}} }\mathrm{dx}=\frac{\mathrm{1}}{\Gamma\left(\mathrm{m}\right)}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{D}^{\mathrm{m}−\mathrm{1}} \mathrm{sin}^{\mathrm{n}} \mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$$$\mathrm{n}+\mathrm{m}\in\mathrm{Odd}\:\mathrm{Number}. \\ $$