Menu Close

prove-1-1-e-x-2-dx-pi-1-2-1-2-




Question Number 129763 by Eric002 last updated on 18/Jan/21
prove  ∫_(−∞) ^(+∞) (1/(1+e^x^2  ))dx=(√π) (1−(√2) )ξ((1/2))
prove+11+ex2dx=π(12)ξ(12)
Answered by Dwaipayan Shikari last updated on 18/Jan/21
∫_(−∞) ^∞ (1/(1+e^x^2  ))dx  =Σ_(n=1) ^∞ (−1)^(n+1) ∫_(−∞) ^∞ e^(−nx^2 ) dx  =(√π)Σ_(n=1) ^∞ (((−1)^(n+1) )/( (√n)))=(√π) η((1/2))=(√π) ζ((1/2))(1−(1/2^(−(1/2)) ))  =(√π) ζ((1/2))(1−(√2))
11+ex2dx=n=1(1)n+1enx2dx=πn=1(1)n+1n=πη(12)=πζ(12)(11212)=πζ(12)(12)
Commented by Eric002 last updated on 18/Jan/21
well done
welldone
Answered by mnjuly1970 last updated on 18/Jan/21
φ=2∫_0 ^( ∞) (1/(1+e^x^2  ))dx=^(x^2 =t) ∫_0 ^( ∞) (dt/( (√t) (1+e^t )))   =∫_(0  ) ^( ∞) (t^((1/2) −1) /(1+e^t )) =Γ(s).η(s)      where  Γ and  η are Euler  gamma and     Drichlet etafunctions respectively.    ∴ φ = Γ((1/2))η((1/2))           = Γ((1/2))(1−2^(1−(1/2)) )ζ((1/2))             =   (√(π )) (1−(√(2 )) )ζ((1/2))...
ϕ=2011+ex2dx=x2=t0dtt(1+et)=0t1211+et=Γ(s).η(s)whereΓandηareEulergammaandDrichletetafunctionsrespectively.ϕ=Γ(12)η(12)=Γ(12)(12112)ζ(12)=π(12)ζ(12)

Leave a Reply

Your email address will not be published. Required fields are marked *