Question Number 159737 by LEKOUMA last updated on 20/Nov/21
$${Prove}\: \\ $$$$\left.\mathrm{1}\right)\:{E}\left({x}\right)+{E}\left({y}\right)\leqslant{E}\left({x}+{y}\right)\leqslant{E}\left({x}\right)+{E}\left({y}\right)+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{E}\left({x}\right)+{E}\left({y}\right)+{E}\left({x}+\mathrm{1}\right)\leqslant{E}\left(\mathrm{2}{x}\right)+{E}\left(\mathrm{2}{y}\right) \\ $$$$\left.\mathrm{3}\right)\:{E}\left(\frac{{x}}{\mathrm{2}}\right)+{E}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)={E}\left({x}\right) \\ $$