Menu Close

Prove-1-E-x-E-y-E-x-y-E-x-E-y-1-2-E-x-E-y-E-x-1-E-2x-E-2y-3-E-x-2-E-x-1-2-E-x-




Question Number 159737 by LEKOUMA last updated on 20/Nov/21
Prove   1) E(x)+E(y)≤E(x+y)≤E(x)+E(y)+1  2) E(x)+E(y)+E(x+1)≤E(2x)+E(2y)  3) E((x/2))+E(((x+1)/2))=E(x)
$${Prove}\: \\ $$$$\left.\mathrm{1}\right)\:{E}\left({x}\right)+{E}\left({y}\right)\leqslant{E}\left({x}+{y}\right)\leqslant{E}\left({x}\right)+{E}\left({y}\right)+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{E}\left({x}\right)+{E}\left({y}\right)+{E}\left({x}+\mathrm{1}\right)\leqslant{E}\left(\mathrm{2}{x}\right)+{E}\left(\mathrm{2}{y}\right) \\ $$$$\left.\mathrm{3}\right)\:{E}\left(\frac{{x}}{\mathrm{2}}\right)+{E}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)={E}\left({x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *