Menu Close

prove-2-lt-log-2-3-lt-3-




Question Number 97412 by mr W last updated on 07/Jun/20
prove  (√2)<log_2  3<(√3)
prove2<log23<3
Answered by bobhans last updated on 08/Jun/20
(√8) < (√9) ⇒log _2 ((√8)) < log _2 ((√9))  (3/2)< log _2 (3). ⇒ (√2) < (3/2) ⇔ (√(2 ))< log _2 (3)   3 < 2^((√3) )  ⇒ log _2 (3) < log _2 (2^(√3) )  log _2 (3) < (√3)   ∴ (√2) < log _2 (3) < (√3)
8<9log2(8)<log2(9)32<log2(3).2<322<log2(3)3<23log2(3)<log2(23)log2(3)<32<log2(3)<3
Answered by 1549442205 last updated on 08/Jun/20
It is easy to see that (√2)<log_2 3<(√3) (∗)  ⇔2^(√2) <3<2^((√3) ) .Since 2^(√2)  <2^(3/2) =(√2^3 ) =(√8) <(√9) =3 and  2^(√3) >2^(1.6) =2^(8/5) =^5 (√2^8 ) =^5 (√(256))>^5 (√(243)) =3,  it follows that the inequality (∗) true
Itiseasytoseethat2<log23<3()22<3<23.Since22<232=23=8<9=3and23>21.6=285=528=5256>5243=3,itfollowsthattheinequality()true

Leave a Reply

Your email address will not be published. Required fields are marked *