Menu Close

Prove-2sin-2-3-2sin-2-cos2-cos6-By-substitusing-pi-10-in-the-above-identity-prove-that-sin-3pi-10-sin-pi-10-1-2-




Question Number 121256 by ZiYangLee last updated on 06/Nov/20
Prove 2sin^2 3θ−2sin^2 θ=cos2θ−cos6θ.  By substitusing θ=(π/(10)) in the above identity,  prove that sin((3π)/(10))−sin(π/(10))=(1/2)
Prove2sin23θ2sin2θ=cos2θcos6θ.Bysubstitusingθ=π10intheaboveidentity,provethatsin3π10sinπ10=12
Answered by TANMAY PANACEA last updated on 06/Nov/20
2sin^2 3θ−2sin^2 θ  1−cos6θ−1+cos2θ  cos2θ−cos6θ  so sin3θ−sinθ=((cos2θ−cos6θ)/(2(sin3θ+sinθ)))  sin((3π)/(10))−sin(π/(10))  ((cos((2π)/(10))−cos((6π)/(10)))/(2(sin((3π)/(10))+sin(π/(10)))))  (1/2)×((2sin(((4π)/(10)))sin(((2π)/(20))))/(2sin(((2π)/(10)))cos((π/(10)))))=(1/2) proved  note  sin((4π)/(10))=cos((π/2)−((4π)/(10)))=cos((π/(10)))
2sin23θ2sin2θ1cos6θ1+cos2θcos2θcos6θsosin3θsinθ=cos2θcos6θ2(sin3θ+sinθ)sin3π10sinπ10cos2π10cos6π102(sin3π10+sinπ10)12×2sin(4π10)sin(2π20)2sin(2π10)cos(π10)=12provednotesin4π10=cos(π24π10)=cos(π10)
Commented by ZiYangLee last updated on 08/Nov/20
thank you sir
thankyousir
Commented by TANMAY PANACEA last updated on 08/Nov/20
most welcome
mostwelcome
Answered by Dwaipayan Shikari last updated on 06/Nov/20
sin((3π)/(10))−sin(𝛑/(10))  =(((√5)+1)/4)−(((√5)−1)/4)=(1/2)
sin3π10sinπ10=5+14514=12

Leave a Reply

Your email address will not be published. Required fields are marked *