Question Number 151665 by Huy last updated on 22/Aug/21
$$\mathrm{prove}\:\mathrm{4arccot5}−\mathrm{arccot239}=\frac{\pi}{\mathrm{4}} \\ $$
Answered by puissant last updated on 22/Aug/21
$${tan}\left(\mathrm{4}{x}\right)=\frac{\mathrm{4}{tanx}−\mathrm{4}\left({tanx}\right)^{\mathrm{3}} }{\mathrm{1}−\mathrm{6}\left({tanx}\right)^{\mathrm{2}} +\left({tanx}\right)^{\mathrm{4}} } \\ $$$${tan}\left(\mathrm{4}{arctan}\frac{\mathrm{1}}{\mathrm{5}}\right)=\frac{\mathrm{120}}{\mathrm{119}} \\ $$$$\beta=\mathrm{4}{tan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right) \\ $$$$\Rightarrow\:{tan}\beta=\frac{{tan}\left(\mathrm{4}{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\right)−{tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right)\right)}{\mathrm{1}+{tan}\left(\mathrm{4}{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)\right){tan}\left({arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right)\right)} \\ $$$$\Rightarrow\:{tan}\beta=\frac{\frac{\mathrm{120}}{\mathrm{119}}−\frac{\mathrm{1}}{\mathrm{239}}}{\mathrm{1}+\frac{\mathrm{120}}{\mathrm{119}}×\frac{\mathrm{1}}{\mathrm{239}}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:{tan}\beta=\mathrm{1}\:\Rightarrow\:\beta={arctan}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\because\:\mathrm{4}{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)−{arctan}\left(\frac{\mathrm{1}}{\mathrm{239}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$$$\left(\:{MACHIN}\:{formula}\right).. \\ $$
Answered by qaz last updated on 22/Aug/21
$$\because\:\:\:\frac{\left(\mathrm{5}+\mathrm{i}\right)^{\mathrm{4}} }{\mathrm{239}+\mathrm{i}}=\frac{\mathrm{28561}+\mathrm{28561i}}{\mathrm{60}} \\ $$$$\therefore\:\:\mathrm{4arccot}\:\mathrm{5}−\mathrm{arccot}\:\mathrm{239} \\ $$$$\:\:\:\:\:\:\:=\mathrm{4arctan}\:\frac{\mathrm{1}}{\mathrm{5}}−\mathrm{arctan}\:\frac{\mathrm{1}}{\mathrm{239}} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{arctan}\:\left(\frac{\frac{\mathrm{28561}}{\mathrm{60}}}{\frac{\mathrm{28561}}{\mathrm{60}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\frac{\pi}{\mathrm{4}} \\ $$