prove-4arccot5-arccot239-pi-4- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 151665 by Huy last updated on 22/Aug/21 prove4arccot5−arccot239=π4 Answered by puissant last updated on 22/Aug/21 tan(4x)=4tanx−4(tanx)31−6(tanx)2+(tanx)4tan(4arctan15)=120119β=4tan(15)−arctan(1239)⇒tanβ=tan(4arctan(15))−tan(arctan(1239))1+tan(4arctan(15))tan(arctan(1239))⇒tanβ=120119−12391+120119×1239=1⇒tanβ=1⇒β=arctan(1)=π4∵4arctan(15)−arctan(1239)=π4(MACHINformula).. Answered by qaz last updated on 22/Aug/21 ∵(5+i)4239+i=28561+28561i60∴4arccot5−arccot239=4arctan15−arctan1239=arctan(28561602856160)=π4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-that-f-x-8x-and-g-x-3x-2-4-find-a-f-1-x-b-an-expression-for-fg-x-c-value-of-x-which-fg-x-20-Next Next post: In-a-rectangle-ABCD-E-is-the-midpoint-of-AB-F-is-a-point-on-AC-such-that-BF-is-perpendicular-to-AC-and-FE-perpendicular-to-BD-Suppose-BC-8-3-Find-AB- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.