Menu Close

prove-4arccot5-arccot239-pi-4-




Question Number 151665 by Huy last updated on 22/Aug/21
prove 4arccot5−arccot239=(π/4)
prove4arccot5arccot239=π4
Answered by puissant last updated on 22/Aug/21
tan(4x)=((4tanx−4(tanx)^3 )/(1−6(tanx)^2 +(tanx)^4 ))  tan(4arctan(1/5))=((120)/(119))  β=4tan((1/5))−arctan((1/(239)))  ⇒ tanβ=((tan(4arctan((1/5)))−tan(arctan((1/(239)))))/(1+tan(4arctan((1/5)))tan(arctan((1/(239))))))  ⇒ tanβ=((((120)/(119))−(1/(239)))/(1+((120)/(119))×(1/(239)))) = 1  ⇒ tanβ=1 ⇒ β=arctan(1)=(π/4)  ∵ 4arctan((1/5))−arctan((1/(239))) = (π/4)  ( MACHIN formula)..
tan(4x)=4tanx4(tanx)316(tanx)2+(tanx)4tan(4arctan15)=120119β=4tan(15)arctan(1239)tanβ=tan(4arctan(15))tan(arctan(1239))1+tan(4arctan(15))tan(arctan(1239))tanβ=12011912391+120119×1239=1tanβ=1β=arctan(1)=π44arctan(15)arctan(1239)=π4(MACHINformula)..
Answered by qaz last updated on 22/Aug/21
∵   (((5+i)^4 )/(239+i))=((28561+28561i)/(60))  ∴  4arccot 5−arccot 239         =4arctan (1/5)−arctan (1/(239))          =arctan ((((28561)/(60))/((28561)/(60))))           =(π/4)
(5+i)4239+i=28561+28561i604arccot5arccot239=4arctan15arctan1239=arctan(28561602856160)=π4

Leave a Reply

Your email address will not be published. Required fields are marked *