Menu Close

prove-a-2-b-2-sin-cos-ab-a-2-b-2-cos-2-b-2-asin-bcos-acos-bsin-




Question Number 167929 by Huy last updated on 29/Mar/22
prove:          (((a^2 +b^2 )sinαcosα−ab)/((a^2 +b^2 )cos^2 α−b^2 ))=((asinα−bcosα)/(acosα+bsinα))
$${prove}:\: \\ $$$$\:\:\:\:\:\:\:\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\mathrm{sin}\alpha\mathrm{cos}\alpha−{ab}}{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\mathrm{cos}^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} }=\frac{{a}\mathrm{sin}\alpha−{b}\mathrm{cos}\alpha}{{a}\mathrm{cos}\alpha+{b}\mathrm{sin}\alpha} \\ $$
Answered by som(math1967) last updated on 29/Mar/22
((a^2 sinαcosα+b^2 sinαcosα−absin^2 α−abcos^2 α)/(a^2 cos^2 α−b^2 (1−cos^2 α)))  =((asinα(acosα−bsinα)−bcosα(acosα−bsinα))/(a^2 cos^2 α−b^2 sin^2 α))  =(((acosα−bsinα)(asinα−bcosα))/((acosα+bsinα)(acosα−bsinα)))  =((asinα−bcosα)/(acosα+bsinα))    (proved)
$$\frac{{a}^{\mathrm{2}} {sin}\alpha{cos}\alpha+{b}^{\mathrm{2}} {sin}\alpha{cos}\alpha−{absin}^{\mathrm{2}} \alpha−{abcos}^{\mathrm{2}} \alpha}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} \left(\mathrm{1}−{cos}^{\mathrm{2}} \alpha\right)} \\ $$$$=\frac{{asin}\alpha\left({acos}\alpha−{bsin}\alpha\right)−{bcos}\alpha\left({acos}\alpha−{bsin}\alpha\right)}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} {sin}^{\mathrm{2}} \alpha} \\ $$$$=\frac{\left({acos}\alpha−{bsin}\alpha\right)\left({asin}\alpha−{bcos}\alpha\right)}{\left({acos}\alpha+{bsin}\alpha\right)\left({acos}\alpha−{bsin}\alpha\right)} \\ $$$$=\frac{{asin}\alpha−{bcos}\alpha}{{acos}\alpha+{bsin}\alpha} \\ $$$$\:\:\left({proved}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *