Prove-arctan1-arctan2-arctan3-pi- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 151943 by Huy last updated on 24/Aug/21 Provearctan1+arctan2+arctan3=π Commented by puissant last updated on 24/Aug/21 x=arctan1,y=arctan2,z=arctan3p=x+y⇒tan(p)=tan(x+y)=tanx+tany1−tanxtany=1+21−2=−3tan(z+p)=tanz+tanp1−tanztanp=3−31+9=0tan(p+z)=tan(x+y+z)=0=tanπ⇒arctan1+arctan2+arctan3=π. Answered by Olaf_Thorendsen last updated on 24/Aug/21 arctana=π2−arctan1aarctana−arctanb=arctan(a−b1+ab)x=arctan1+arctan2+arctan3x=arctan1+π2−arctan12+π2−arctan13x=π+arctan(1−121+1.12)−arctan13x=π+arctan13−arctan13x=π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-20869Next Next post: Question-151940 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.