Menu Close

Prove-arctan1-arctan2-arctan3-pi-




Question Number 151943 by Huy last updated on 24/Aug/21
Prove arctan1+arctan2+arctan3=π
Provearctan1+arctan2+arctan3=π
Commented by puissant last updated on 24/Aug/21
x=arctan1 , y=arctan2 , z=arctan3  p=x+y  ⇒ tan(p)=tan(x+y)=((tanx+tany)/(1−tanxtany))  =((1+2)/(1−2)) = −3  tan(z+p)=((tanz+tanp)/(1−tanztanp)) = ((3−3)/(1+9)) = 0  tan(p+z)=tan(x+y+z)=0=tanπ    ⇒ arctan1+arctan2+arctan3=π.
x=arctan1,y=arctan2,z=arctan3p=x+ytan(p)=tan(x+y)=tanx+tany1tanxtany=1+212=3tan(z+p)=tanz+tanp1tanztanp=331+9=0tan(p+z)=tan(x+y+z)=0=tanπarctan1+arctan2+arctan3=π.
Answered by Olaf_Thorendsen last updated on 24/Aug/21
arctana = (π/2)−arctan(1/a)  arctana−arctanb = arctan(((a−b)/(1+ab)))  x = arctan1+arctan2+arctan3  x = arctan1+(π/2)−arctan(1/2)+(π/2)−arctan(1/3)  x = π+arctan(((1−(1/2))/(1+1.(1/2))))−arctan(1/3)  x = π+arctan(1/3)−arctan(1/3)  x = π
arctana=π2arctan1aarctanaarctanb=arctan(ab1+ab)x=arctan1+arctan2+arctan3x=arctan1+π2arctan12+π2arctan13x=π+arctan(1121+1.12)arctan13x=π+arctan13arctan13x=π

Leave a Reply

Your email address will not be published. Required fields are marked *