Menu Close

Prove-arctan1-arctan2-arctan3-pi-




Question Number 151943 by Huy last updated on 24/Aug/21
Prove arctan1+arctan2+arctan3=π
$$\mathrm{Prove}\:\mathrm{arctan1}+\mathrm{arctan2}+\mathrm{arctan3}=\pi \\ $$
Commented by puissant last updated on 24/Aug/21
x=arctan1 , y=arctan2 , z=arctan3  p=x+y  ⇒ tan(p)=tan(x+y)=((tanx+tany)/(1−tanxtany))  =((1+2)/(1−2)) = −3  tan(z+p)=((tanz+tanp)/(1−tanztanp)) = ((3−3)/(1+9)) = 0  tan(p+z)=tan(x+y+z)=0=tanπ    ⇒ arctan1+arctan2+arctan3=π.
$${x}={arctan}\mathrm{1}\:,\:{y}={arctan}\mathrm{2}\:,\:{z}={arctan}\mathrm{3} \\ $$$${p}={x}+{y} \\ $$$$\Rightarrow\:{tan}\left({p}\right)={tan}\left({x}+{y}\right)=\frac{{tanx}+{tany}}{\mathrm{1}−{tanxtany}} \\ $$$$=\frac{\mathrm{1}+\mathrm{2}}{\mathrm{1}−\mathrm{2}}\:=\:−\mathrm{3} \\ $$$${tan}\left({z}+{p}\right)=\frac{{tanz}+{tanp}}{\mathrm{1}−{tanztanp}}\:=\:\frac{\mathrm{3}−\mathrm{3}}{\mathrm{1}+\mathrm{9}}\:=\:\mathrm{0} \\ $$$${tan}\left({p}+{z}\right)={tan}\left({x}+{y}+{z}\right)=\mathrm{0}={tan}\pi \\ $$$$ \\ $$$$\Rightarrow\:{arctan}\mathrm{1}+{arctan}\mathrm{2}+{arctan}\mathrm{3}=\pi. \\ $$
Answered by Olaf_Thorendsen last updated on 24/Aug/21
arctana = (π/2)−arctan(1/a)  arctana−arctanb = arctan(((a−b)/(1+ab)))  x = arctan1+arctan2+arctan3  x = arctan1+(π/2)−arctan(1/2)+(π/2)−arctan(1/3)  x = π+arctan(((1−(1/2))/(1+1.(1/2))))−arctan(1/3)  x = π+arctan(1/3)−arctan(1/3)  x = π
$$\mathrm{arctan}{a}\:=\:\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\frac{\mathrm{1}}{{a}} \\ $$$$\mathrm{arctan}{a}−\mathrm{arctan}{b}\:=\:\mathrm{arctan}\left(\frac{{a}−{b}}{\mathrm{1}+{ab}}\right) \\ $$$${x}\:=\:\mathrm{arctan1}+\mathrm{arctan2}+\mathrm{arctan3} \\ $$$${x}\:=\:\mathrm{arctan1}+\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\frac{\mathrm{1}}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}−\mathrm{arctan}\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}\:=\:\pi+\mathrm{arctan}\left(\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}+\mathrm{1}.\frac{\mathrm{1}}{\mathrm{2}}}\right)−\mathrm{arctan}\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}\:=\:\pi+\mathrm{arctan}\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{arctan}\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${x}\:=\:\pi \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *