Menu Close

Prove-by-mathematcal-induction-that-1-1-1-2-1-1-2-3-1-1-2-3-n-2n-n-1-




Question Number 15671 by tawa tawa last updated on 12/Jun/17
Prove by mathematcal induction that  1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + 3 + ... n)) = ((2n)/(n + 1))
Provebymathematcalinductionthat1+11+2+11+2+3++11+2+3+n=2nn+1
Answered by icyfalcon999 last updated on 12/Jun/17
1)proving that the statement true when n=1  R.H.S.=((2(1))/(1+1))=(2/2)=1=L.H.S.  2)suppose that the statement is true when n=k ,k∈Nu      1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + 3 + ... k)) = ((2k)/(k + 1))  3)proving that the statement true when n=k+1  1 + (1/(1 + 2)) + (1/(1 + 2 + 3)) + ... + (1/(1 + 2 + 3 + ... k))+(1/(1+2+3+...+k+1)) = ((2(k+1))/(k + 2))  L.H.S.=((2k)/(k+1))+(1/(1+2+3+...+k+1))  =((2k)/(k+1))+(1/(((k+1)(k+2))/2))  =((2k)/(k+1))+(2/((k+1)(k+2)))  =((2k(k+2)+2)/((k+1)(k+2)))  =((2k^2 +4k+2)/((k+1)(k+2)))  =((2(k^2 +2k+1))/((k+1)(k+2)))  =((2(k+1)^2 )/((k+1)(k+2)))  =((2(k+1))/((k+2)))  =R.H.S.  from 1,2,3 the statment is true for all natural numbers
1)provingthatthestatementtruewhenn=1R.H.S.=2(1)1+1=22=1=L.H.S.2)supposethatthestatementistruewhenn=k,kNu1+11+2+11+2+3++11+2+3+k=2kk+13)provingthatthestatementtruewhenn=k+11+11+2+11+2+3++11+2+3+k+11+2+3++k+1=2(k+1)k+2L.H.S.=2kk+1+11+2+3++k+1=2kk+1+1(k+1)(k+2)2=2kk+1+2(k+1)(k+2)=2k(k+2)+2(k+1)(k+2)=2k2+4k+2(k+1)(k+2)=2(k2+2k+1)(k+1)(k+2)=2(k+1)2(k+1)(k+2)=2(k+1)(k+2)=R.H.S.from1,2,3thestatmentistrueforallnaturalnumbers

Leave a Reply

Your email address will not be published. Required fields are marked *