Menu Close

prove-by-mathematical-induction-2-3-4-3-6-3-8-3-2n-3-2n-2-n-1-2-




Question Number 105605 by bobhans last updated on 30/Jul/20
prove by mathematical induction   2^3 +4^3 +6^3 +8^3 +...+(2n)^3 = 2n^2 (n+1)^2
provebymathematicalinduction23+43+63+83++(2n)3=2n2(n+1)2
Answered by bemath last updated on 30/Jul/20
(1)P(1) =  { ((lhs = 8)),((rhs=2.(2)^2 =8)) :} (true)  (2) let P(k) is true then   2^3 +4^3 +6^3 +...+(2k)^3 =2k^2 (k+1)^2   (3) put n = k+1  lhs : 2^3 +4^3 +6^3 +...+(2k)^3 +(2(k+1))^3 =  2k^2 (k+1)^2 +2^3 (k+1)^3  =  2(k+1)^2 {k^2 +4(k+1)}=  2(k+1)^2 {k^2 +4k+4}=  2(k+1)^2 (k+2)^2   rhs : 2(k+1)^2 (k+1+1)^2 =  2(k+1)^2 (k+2)^2   true ⇒ QED
(1)P(1)={lhs=8rhs=2.(2)2=8(true)(2)letP(k)istruethen23+43+63++(2k)3=2k2(k+1)2(3)putn=k+1lhs:23+43+63++(2k)3+(2(k+1))3=2k2(k+1)2+23(k+1)3=2(k+1)2{k2+4(k+1)}=2(k+1)2{k2+4k+4}=2(k+1)2(k+2)2rhs:2(k+1)2(k+1+1)2=2(k+1)2(k+2)2trueQED
Answered by Dwaipayan Shikari last updated on 30/Jul/20
Without Mathematical Induction  T_n =(2n)^3   ΣT_n =8Σn^3   Σ_(n=1) ^n T_n =8(((n(n+1))/2))^2 =2n^2 (n+1)^2
WithoutMathematicalInductionTn=(2n)3ΣTn=8Σn3nn=1Tn=8(n(n+1)2)2=2n2(n+1)2
Commented by JDamian last updated on 30/Jul/20
“From n=1 up to n”?
Fromn=1upton?

Leave a Reply

Your email address will not be published. Required fields are marked *