Menu Close

prove-by-mathematical-induction-7-n-3n-4-4-n-1-divided-by-9-




Question Number 111132 by bemath last updated on 02/Sep/20
prove by mathematical induction  ⇒ 7^n −(3n+4)×4^(n−1)  divided by 9
provebymathematicalinduction7n(3n+4)×4n1dividedby9
Answered by john santu last updated on 02/Sep/20
let p(n) = 7^n −(3n+4).4^(n−1)   (1)p(1) = 7−(3.1+4).4^0 = 7−7=0 (true)  (2) assume for n=k →p(k) divisible by 9  we have p(k)=7^k −(3k+4).4^(k−1) ≡ 9m , m∈Z                              =7^k −3k.4^(k−1) −4^k ≡ 9m               = 7^k −4^k −3k.4^(k−1)  ≡ 9m  (3) we want to prove for n=k+1   p(k+1) is divisible by 9  p(k+1)=7^(k+1) −(3(k+1)+4).4^k   ⇔ 7.7^k −(3k+4+3).4^k   ⇔7.7^k −(3k+7).4^k   ⇒7.7^k −3k.4^k −7.4^k   ⇒7(7^k −4^k )−3k.4^k   ⇒ 7(7^k −4^k −3k.4^(k−1) )+21k.4^(k−1) −3k.4^k   ⇒7(9m)+3k.4^(k−1) (7−4)  ⇒63m+9k.4^(k−1)   ⇒9(7m+k.4^(k−1) ) is divisible by 9.  q.e.d
letp(n)=7n(3n+4).4n1(1)p(1)=7(3.1+4).40=77=0(true)(2)assumeforn=kp(k)divisibleby9wehavep(k)=7k(3k+4).4k19m,mZ=7k3k.4k14k9m=7k4k3k.4k19m(3)wewanttoproveforn=k+1p(k+1)isdivisibleby9p(k+1)=7k+1(3(k+1)+4).4k7.7k(3k+4+3).4k7.7k(3k+7).4k7.7k3k.4k7.4k7(7k4k)3k.4k7(7k4k3k.4k1)+21k.4k13k.4k7(9m)+3k.4k1(74)63m+9k.4k19(7m+k.4k1)isdivisibleby9.q.e.d

Leave a Reply

Your email address will not be published. Required fields are marked *