Menu Close

Prove-by-mathematical-induction-r-1-n-1-r-r-1-n-n-1-




Question Number 157351 by physicstutes last updated on 22/Oct/21
Prove by mathematical induction   Σ_(r=1) ^n (1/(r(r+1))) = (n/(n+1))
Provebymathematicalinductionnr=11r(r+1)=nn+1
Commented by hknkrc46 last updated on 22/Oct/21
★ (1/(r(r + 1))) = (((r + 1) − r)/(r(r + 1)))  = ((r + 1)/(r(r + 1))) − (r/(r(r + 1)))  = (1/r) − (1/(r + 1))   ★ Σ_(r=1) ^n (1/(r(r+1))) = Σ_(r=1) ^n ((1/r) − (1/(r + 1)))  = ((1/1) − (1/2))+((1/2) − (1/3))+ ∙∙∙ +((1/n) − (1/(n + 1)))  = (1/1) − (1/(n + 1)) = (n/(n + 1))
1r(r+1)=(r+1)rr(r+1)=r+1r(r+1)rr(r+1)=1r1r+1nr=11r(r+1)=nr=1(1r1r+1)=(1112)+(1213)++(1n1n+1)=111n+1=nn+1
Answered by ajfour last updated on 22/Oct/21
S=Σ_(r=1) ^n (1/T_r )=Σ_(r=1) ^n ((1/r)−(1/(r+1)))     =Σ_(r=1) ^n (t_r −t_(r+1) )=1−(1/(n+1))  ⇒  S=(n/(n+1))
S=nr=11Tr=nr=1(1r1r+1)=nr=1(trtr+1)=11n+1S=nn+1
Answered by physicstutes last updated on 22/Oct/21
• prove for n = 1.   LHS = Σ_(r=1) ^1 (1/(r(r+1))) = (1/(1(1+1))) = (1/2)  RHS = (1/(1+1)) =(1/2)  ⇒ true for n=1.  • Assume it is true for n=k  ⇒ Σ_(r=1) ^k (1/(r(r+1))) = (k/(k+1))  • Prove for n= k+1.  Σ_(r=1) ^(k+1) (1/(r(r+1))) = Σ_(r=1) ^k (1/(r(r+1))) + (1/((k+1)(k+2)))                        = (k/(k+1))+(1/((k+1)(k+2)))                        = (1/(k+1))(k+(1/(k+2)))                        =(1/(k+1))(((k^2 +2k+1)/(k+2)))                        = (1/(k+1))((((k+1)^2 )/(k+2)))                        = ((k+1)/(k+2))  ⇒ true for n= k+1   hence true ∀ n ∈Z
proveforn=1.LHS=1r=11r(r+1)=11(1+1)=12RHS=11+1=12trueforn=1.Assumeitistrueforn=kkr=11r(r+1)=kk+1Proveforn=k+1.k+1r=11r(r+1)=kr=11r(r+1)+1(k+1)(k+2)=kk+1+1(k+1)(k+2)=1k+1(k+1k+2)=1k+1(k2+2k+1k+2)=1k+1((k+1)2k+2)=k+1k+2trueforn=k+1hencetruenZ
Answered by som(math1967) last updated on 22/Oct/21
To prove   (1/(1×2)) +(1/(2×3)) +(1/(3×4)) +...+(1/(n(n+1)))=(n/(n+1))  p(1) L.H.S=(1/(1×2))=(1/2)  R.H.S=(1/(1+1))=(1/2)  ∴true for p(1)  let true for p(m)  ∴ (1/(1×2)) +(1/(2×3)) +...+(1/(m(m+1)))=(m/(m+1))  now p(m+1)  =(1/(1×2)) +(1/(2×3)) +...+(1/(m(m+1))) +(1/((m+1)(m+2)))  =(m/(m+1)) +(1/((m+1)(m+2))) ★  =((m(m+2)+1)/((m+1)(m+2)))  =(((m+1)^2 )/((m+1)(m+2)))=((m+1)/(m+2))  ∴true for p(m+1)  ∴Σ^n _(r=1)  (1/(r(r+1))) =(n/(n+1))  ★ (1/(1×2))+(1/(2×3)) +...+(1/(m(m+1)))=(m/(m+1))
Toprove11×2+12×3+13×4++1n(n+1)=nn+1p(1)L.H.S=11×2=12R.H.S=11+1=12trueforp(1)lettrueforp(m)11×2+12×3++1m(m+1)=mm+1nowp(m+1)=11×2+12×3++1m(m+1)+1(m+1)(m+2)=mm+1+1(m+1)(m+2)=m(m+2)+1(m+1)(m+2)=(m+1)2(m+1)(m+2)=m+1m+2trueforp(m+1)nr=11r(r+1)=nn+111×2+12×3++1m(m+1)=mm+1
Commented by peter frank last updated on 22/Oct/21
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *