Question Number 85073 by Roland Mbunwe last updated on 18/Mar/20
$${Prove}\:{by}\:{mathematical}\:{induction}\:{that} \\ $$$$\mathrm{2002}^{{n}+\mathrm{2}} +\mathrm{2003}^{\mathrm{2}{n}+\mathrm{1}} \:\:\:\:{is}\:{divisible}\:{by}\:\mathrm{4005} \\ $$
Commented by MJS last updated on 18/Mar/20
$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{for}\:{n}=\mathrm{1}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{wrong}\:\mathrm{for}\:{n}=\mathrm{2},\:\mathrm{3},\:\mathrm{4} \\ $$