Menu Close

Prove-by-maths-induction-tbat-n-5-n-3-is-divisible-by-24-




Question Number 82034 by Dah Solu Tion last updated on 17/Feb/20
Prove  by  maths  induction  tbat  n^5  − n^3   is divisible by 24.
Provebymathsinductiontbatn5n3isdivisibleby24.
Commented by MJS last updated on 17/Feb/20
without induction 24=2^3 ×3  n^5 −n^3 =(n−1)n^3 (n+1)  ∀n∈Z: 3∣(n−1) xor 3∣n xor 3∣(n+1)  ⇒ 3∣(n^5 −n^3 )  ∀n∈Z: 2∣(n−1)∧2∣(n+1) xor 2∣n  ⇒  { ((2∣n ⇒ 8∣n^3 )),((2∤n ⇒ n=2k+1 ⇒ (n−1)(n+1)=4k(k+1) ⇒ 8∣(n−1)(n+1))) :}  ⇒ 8∣(n^5 −n^3 )    ⇒ 24∣(n^5 −n^3 )
withoutinduction24=23×3n5n3=(n1)n3(n+1)nZ:3(n1)xor3nxor3(n+1)3(n5n3)nZ:2(n1)2(n+1)xor2n{2n8n32nn=2k+1(n1)(n+1)=4k(k+1)8(n1)(n+1)8(n5n3)24(n5n3)

Leave a Reply

Your email address will not be published. Required fields are marked *