Menu Close

prove-by-reccurence-1-2-1-4-1-6-1-2n-lt-or-n-2-thanks-




Question Number 108371 by Skabetix last updated on 16/Aug/20
prove by reccurence   (1/2)+(1/4)+(1/6)+...+(1/(2n))<or =(n/2)  thanks
provebyreccurence12+14+16++12n<or=n2thanks
Answered by Aziztisffola last updated on 16/Aug/20
 for n=1 ⇒(1/2)≤(1/2)  true   suppose (1/2)+(1/4)+(1/6)+...+(1/(2n))≤(n/2)   and prove that (1/2)+(1/4)+(1/6)+...+(1/(2n))+(1/(2n+2))≤((n+1)/2)  (1/2)+(1/4)+(1/6)+...+(1/(2n))+(1/(2n+2))≤(n/2)+(1/(2n+2))  (n/2)+(1/(2n+2))=(n/2)+(1/(2(n+1)))≤(n/2)+(1/2)  =((n+1)/2)  (1/2)+(1/4)+(1/6)+...+(1/(2n))+(1/(2n+2))≤((n+1)/2)  hence ∀n∈N^∗  Σ_(k=1) ^n (1/(2k))≤(n/2)
forn=11212truesuppose12+14+16++12nn2andprovethat12+14+16++12n+12n+2n+1212+14+16++12n+12n+2n2+12n+2n2+12n+2=n2+12(n+1)n2+12=n+1212+14+16++12n+12n+2n+12hencenNnk=112kn2
Answered by 1549442205PVT last updated on 16/Aug/20
i)For n=1 we have (1/2)=(1/2)⇒true  ii)Consider n≥5 we have  (1/(10))<(1/(4.5))=(1/4)−(1/5),(1/(12))<(1/(5.6))=(1/5)−(1/6)...  (1/(2n))<(1/((n−1)n))=(1/(n−1))−(1/n)  ⇒(1/(10))+(1/(12))+...+(1/(2n))<(1/4)−(1/5)+(1/5)−(1/6)+...  ...+(1/(n−1))−(1/n)=(1/4)−(1/n).Hence,  Adding up we get  LHS<((1/2)+(1/4)+(1/6)+(1/8))+(1/4)−(1/n)<(n/2)  ⇔((12+6+4+3)/(24))−(1/n)<(n/2)⇔((25)/(24))−(1/n)<(n/2)  ⇔((25n−24)/(24n))<(n/2)⇔12n^2 −25n+24>0  ⇔12(n−((25)/(24)))^2 +24−((625)/(48))>0  is true ∀n≥2  Consequently,  (1/2)+(1/4)+(1/6)+...+(1/(2n))≤(n/2)(q.e.d)
i)Forn=1wehave12=12trueii)Considern5wehave110<14.5=1415,112<15.6=151612n<1(n1)n=1n11n110+112++12n<1415+1516++1n11n=141n.Hence,AddingupwegetLHS<(12+14+16+18)+141n<n212+6+4+3241n<n225241n<n225n2424n<n212n225n+24>012(n2524)2+2462548>0istruen2Consequently,12+14+16++12nn2(q.e.d)

Leave a Reply

Your email address will not be published. Required fields are marked *