Question Number 160539 by LEKOUMA last updated on 01/Dec/21
$${Prove}\:{by}\:{recurrence}\:{that} \\ $$$$\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} },\:\forall{n}\geqslant\mathrm{1}. \\ $$
Answered by TheSupreme last updated on 01/Dec/21
$${n}=\mathrm{1} \\ $$$$\mathrm{1}\leqslant\mathrm{1} \\ $$$$ \\ $$$${if}\:\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\rightarrow\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}\frac{\mathrm{1}}{{n}!}\leqslant\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)}\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$$\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:\rightarrow\:{n}\geqslant\mathrm{1}\: \\ $$$$ \\ $$