Menu Close

prove-by-recurrence-that-k-1-n-k-4-n-n-1-2n-1-3n-2-3n-1-30-




Question Number 40876 by prof Abdo imad last updated on 28/Jul/18
prove by recurrence that   Σ_(k=1) ^n  k^4 =((n(n+1)(2n+1)(3n^2  +3n−1))/(30))
$${prove}\:{by}\:{recurrence}\:{that}\: \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{4}} =\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{3}{n}−\mathrm{1}\right)}{\mathrm{30}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *