Menu Close

Prove-by-the-principle-of-induction-that-1-4-7-2-5-8-3-6-9-n-n-3-n-6-n-4-n-1-n-6-n-7-




Question Number 177931 by Spillover last updated on 11/Oct/22
Prove by the principle of   induction that  1.4.7+2.5.8+3.6.9+...n(n+3)(n+6)  =(n/4)(n+1)(n+6)(n+7)
Provebytheprincipleofinductionthat1.4.7+2.5.8+3.6.9+n(n+3)(n+6)=n4(n+1)(n+6)(n+7)
Answered by Ar Brandon last updated on 11/Oct/22
Test for k=1 , k=2,   assume P_k  is true for n and deduce that it′s true for n+1  P_n : Σ_(k=1) ^n k(k+3)(k+6)=(n/4)(n+1)(n+6)(n+7)  P_(n+1) : Σ_(k=1) ^(n+1) k(k+3)(k+6)=P_n +(n+1)^(th)  term             =(n/4)(n+1)(n+6)(n+7)+(n+1)(n+4)(n+7)             =(n+1)(n+7)[(n/4)(n+6)+n+4]             =(((n+1)(n+7))/4)(n^2 +10n+16)              =(((n+1)(n+7))/4)(n+2)(n+8)              =(((n+1))/4)(n+2)(n+7)(n+8)  ... Conclusion...
Testfork=1,k=2,assumePkistruefornanddeducethatitstrueforn+1Pn:nk=1k(k+3)(k+6)=n4(n+1)(n+6)(n+7)Pn+1:n+1k=1k(k+3)(k+6)=Pn+(n+1)thterm=n4(n+1)(n+6)(n+7)+(n+1)(n+4)(n+7)=(n+1)(n+7)[n4(n+6)+n+4]=(n+1)(n+7)4(n2+10n+16)=(n+1)(n+7)4(n+2)(n+8)=(n+1)4(n+2)(n+7)(n+8)Conclusion

Leave a Reply

Your email address will not be published. Required fields are marked *