Question Number 158453 by zakirullah last updated on 04/Nov/21
$${prove}\:\frac{{d}}{{dx}}{sec}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}\:=\:\mathrm{2} \\ $$
Commented by yeti123 last updated on 04/Nov/21
$$\frac{{d}}{{dx}}\left(\mathrm{sec}^{\mathrm{2}} \left(\pi/\mathrm{4}\right)\right)\:=\:\frac{{d}}{{dx}}\left(\mathrm{2}\right)\:=\:\mathrm{0} \\ $$
Commented by zakirullah last updated on 04/Nov/21
$${excuse}\:{me}\:{sir}!\:{i}\:{mean} \\ $$$$\:{how}\:{f}^{'} \left(\frac{\pi}{\mathrm{4}}\right)\:=\:{sec}^{\mathrm{2}} \frac{\pi}{\mathrm{4}}\:=\:\mathrm{2}\:{according}\:{to}\:{taylor}\:{series}. \\ $$$$ \\ $$